



# Fosse Green Energy

EN010154

## 6.3 Environmental Statement Appendices

Appendix 14-D: Glint and Glare Assessment

---

Planning Act 2008 (as amended)

Regulation 5(2)(a)

Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulations 2009 (as amended)

---

18 July 2025

---

**VOLUME**

**6**

---

## Planning Act 2008

### The Infrastructure Planning (Applications: Prescribed Forms and Procedure) Regulation 2009 (as amended)

Fosse Green Energy

Development Consent Order 202[ ]

---

### **6.3 Environmental Statement Appendices**

#### **Appendix 14-D: Glint and Glare Assessment**

---

|                                        |                            |
|----------------------------------------|----------------------------|
| Regulation Reference                   | Regulation 5(2)(a)         |
| Planning Inspectorate Scheme Reference | EN010154                   |
| Application Document Reference         | EN010154/APP/6.3           |
| Author                                 | Fosse Green Energy Limited |

| <b>Version</b> | <b>Date</b>       | <b>Issue Purpose</b> |
|----------------|-------------------|----------------------|
| Rev 1          | 18 July 2025      | DCO Submission       |
| Rev 2          | 02 September 2025 | Procedural Decision  |



# Glint and Glare Assessment

Fosse Green Energy

July 2025

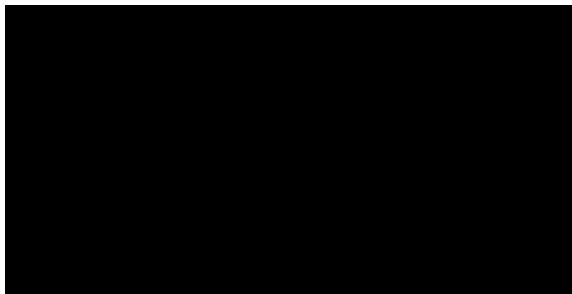


## Disclaimer

*Neo Environmental Limited shall have no liability for any loss, damage, injury, claim, expense, cost or other consequence arising as a result of use or reliance upon any information contained in or omitted from this document.*

## Copyright © 2024

*The material presented in this report is confidential. This report has been prepared for the exclusive use of AECOM. The report shall not be distributed or made available to any other company or person without the knowledge and written consent of AECOM or Neo Environmental Ltd.*


| <b>Neo Environmental Ltd</b>                                                                                                                                                                                                    |                                                                                                                                                                                                                                                |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Head Office - Glasgow:</b><br>Wright Business Centre,<br>1 Lonmay Road,<br>Glasgow<br>G33 4EL<br><b>T:</b> 0141 773 6262<br><b>E:</b> <a href="mailto:info@neo-environmental.co.uk">info@neo-environmental.co.uk</a>         | <b>Bristol Office</b><br>Spaces 8th Floor<br>The Programme Building<br>Bristol<br>BS1 2NB<br><b>T:</b> 01174 571 610<br><b>E:</b> <a href="mailto:info@neo-environmental.ie">info@neo-environmental.ie</a>                                     |
| <b>Warrington Office:</b><br>Lakeview 600, Lakeside Drive<br>Centre Park Square<br>Warrington<br>WA1 1RW<br><b>T:</b> 01925 661 716<br><b>E:</b> <a href="mailto:info@neo-environmental.co.uk">info@neo-environmental.co.uk</a> | <b>Rugby Office:</b><br>Valiant Suites,<br>Lumonics House, Valley Drive,<br>Swift Valley, Rugby<br>Warwickshire CV21 1TQ<br><b>T:</b> 01788 297012<br><b>E:</b> <a href="mailto:info@neo-environmental.co.uk">info@neo-environmental.co.uk</a> |
| <b>Ireland Office:</b><br>C/O Origin Enterprises PLC,<br>4-6 Riverwalk,<br>Citywest Business Campus<br>Dublin 24, D24 DCW0<br><b>T:</b> 00 353 (1) 5634900                                                                      | <b>Northern Ireland Office:</b><br>83-85 Bridge Street<br>Ballymena,<br>Co. Antrim<br>BT43 5EN<br><b>T:</b> 0282 565 04 13                                                                                                                     |

E: [info@neo-environmental.ie](mailto:info@neo-environmental.ie)

E: [info@neo-environmental.co.uk](mailto:info@neo-environmental.co.uk)

**Prepared For:**

AECOM



|            | Name | Date      |
|------------|------|-----------|
| Edited By: |      |           |
|            | Name | Signature |
|            |      |           |

## Contents

### Part 1 of 5:

|                                                                                            |    |
|--------------------------------------------------------------------------------------------|----|
| 1. EXECUTIVE SUMMARY.....                                                                  | 7  |
| 2. INTRODUCTION .....                                                                      | 10 |
| Background .....                                                                           | 10 |
| Proposed Development Description .....                                                     | 10 |
| Site Description .....                                                                     | 11 |
| Scope of Report.....                                                                       | 11 |
| Statement of Competence .....                                                              | 13 |
| Definitions .....                                                                          | 14 |
| 3. LEGISLATION AND GUIDANCE .....                                                          | 16 |
| National Planning Policy Guidance (NPPG) on Renewable and Low Carbon Energy (UK) .....     | 16 |
| National Policy Statement for Renewable Energy Infrastructure (EN-3) .....                 | 16 |
| Planning Guidance for the Development of Large-Scale Ground Mounted Solar PV Systems ..... | 17 |
| Interim CAA Guidance – Solar Photovoltaic Systems (2010) .....                             | 18 |
| CAA – CAP738: Safeguarding of Aerodromes 3 <sup>rd</sup> Edition.....                      | 19 |
| US Federal Aviation Administration Policy .....                                            | 20 |
| FAA Policy: Review of Solar Energy Systems Projects on Federally - Obligated Airports..... | 21 |
| Review of Local Plan.....                                                                  | 22 |
| 4. METHODOLOGY .....                                                                       | 23 |
| Sun Position and Reflection Model .....                                                    | 23 |
| Identification of Receptors .....                                                          | 26 |
| Magnitude of Impact.....                                                                   | 27 |
| 5. BASELINE CONDITIONS.....                                                                | 30 |
| Ground Based Receptors Reflection Zones .....                                              | 30 |
| 6. IMPACT ASSESSMENT.....                                                                  | 60 |
| Ground Based Receptors.....                                                                | 60 |

|                                          |     |
|------------------------------------------|-----|
| 7. GROUND BASED RECEPTOR MITIGATION..... | 156 |
| 8. SUMMARY .....                         | 181 |
| 9. APPENDICES .....                      | 184 |
| Appendix A: Figures.....                 | 184 |

## Part 2 of 5

|                                                                                                 |  |
|-------------------------------------------------------------------------------------------------|--|
| Appendix BA: Residential Receptor Glare Results Group A (Receptors 1 – 80) (5 degrees)          |  |
| Appendix BB: Residential Receptor Glare Results Group B (Receptors 81 - 160) (5 degrees)        |  |
| Appendix BC: Residential Receptor Glare Results Group C (Receptors –161 - 203) (5 degrees)      |  |
| Appendix BD: Residential Receptor Glare Results Group D (Receptors –204 - 228) (5 degrees)      |  |
| Appendix CA: Residential Receptor Glare Results Group A (Receptors 1 – 80) (45 degrees) .....   |  |
| Appendix CB: Residential Receptor Glare Results Group B (Receptors 81 - 160) (45 degrees) ..... |  |
| Appendix CC: Residential Receptor Glare Results Group C (Receptors –161 - 203) (45) .....       |  |
| Appendix CD: Residential Receptor Glare Results Group D (Receptors –204 - 228) (45) .....       |  |
| Appendix DA: Residential Receptor Glare Results Group A (Receptors 1 – 80) (Tracker) .....      |  |

## Part 3 of 5:

|                                                                                                |  |
|------------------------------------------------------------------------------------------------|--|
| Appendix DB: Residential Receptor Glare Results Group B (Receptors 81 - 160) (Tracker) .....   |  |
| Appendix DC: Residential Receptor Glare Results Group C (Receptors –161 - 203) (Tracker) ..... |  |
| Appendix DD: Residential Receptor Glare Results Group D (Receptors –204 - 228) (Tracker) ..... |  |
| Appendix EA: Road Receptor Glare Results Group A (Receptors 1 – 79) (5 degrees) .....          |  |
| Appendix EB: Road Receptor Glare Results Group B (Receptors 80 – 151) (5 degrees) .....        |  |
| Appendix EC: Road Receptor Glare Results Group C (receptors 152 – 215) (5 degrees).....        |  |
| Appendix FA: Road Receptor Glare Results Group A (Receptors 1 – 79) (45 degrees) .....         |  |
| Appendix FB: Road Receptor Glare Results Group B (Receptors 80 – 151) (45 degrees) .....       |  |
| Appendix FC: Road Receptor Glare Results Group C (receptors 152 – 215) (45 degrees) .....      |  |

## Part 4 of 5

|                                                                                        |  |
|----------------------------------------------------------------------------------------|--|
| Appendix GA: Road Receptor Glare Results Group A (Receptors 1 – 79) (Tracker) .....    |  |
| Appendix GB: Road Receptor Glare Results Group B (Receptors 80 – 151) (Tracker) .....  |  |
| Appendix GC: Road Receptor Glare Results Group C (receptors 152 – 215) (Tracker) ..... |  |
| Appendix G: Road Receptor Glare Results (35 degrees) .....                             |  |
| Appendix H: Rail Receptor Glare Results (5 degrees) .....                              |  |
| Appendix I: Rail Receptor Glare Results (45 degrees).....                              |  |
| Appendix J: Rail Receptor Glare Results (Tracker) .....                                |  |
| Appendix K: Bridleway Receptor Glare Results (5 degrees) .....                         |  |
| Appendix L: Bridleway Receptor Glare Results (45 degrees) .....                        |  |

**Part 5 of 5**

|                                                                     |
|---------------------------------------------------------------------|
| Appendix M: Bridleway Receptor Glare Results (Tracker) .....        |
| Appendix N: Aviation Receptor Glare Results (5 degrees) .....       |
| Appendix O: Aviation Receptor Glare Results (45 degrees).....       |
| Appendix P: Aviation Receptor Glare Results (Tracker).....          |
| Appendix Q: Visibility Assessment Evidence.....                     |
| Appendix R: Ground Elevation Profile .....                          |
| Appendix S: Solar Module Glare and Reflectance Technical Memo ..... |

# 1. EXECUTIVE SUMMARY

1.1. This assessment considers the potential impacts on ground-based receptors such as roads, rail and residential dwellings as well as aviation assets from Fosse Green Energy project (the 'Proposed Development'). A 1km study area around the Principal Site is considered adequate for the assessment of ground-based (residential, road, rail and bridleway) receptors, whilst a 30km study area is chosen for aviation receptors. Within the ground-based study areas of the Principal Site, there are 228 residential receptors, including 26 residential areas, 243 road receptors, 20 rail receptors and 82 bridleway receptors that were considered. As per the methodology section, where there are several residential receptors within close proximity, a representative dwelling or dwellings is/are chosen for full assessment as the impacts will not vary to any significant degree. Where small groups of receptors have been evident, the receptors on either end of the group have been assessed in detail. 10 residential receptors, including four residential areas, 26 road receptors, seven rail receptors and three bridleway receptors were dismissed as they are located within the no reflection zones (see paragraph 5.1 – 5.3). 35 aerodromes are located within the 30km study area; five of which, RAF Waddington, Peacocks Farm, South Hykeham Airfield, South Scarle Airfield and Blackmoor Farm required detailed assessments as the Principal Site is located within their respective safeguarding buffer zones. The other 30 aerodromes did not require a detailed assessment due to their size and/or orientation in relation to the Principal Site.

1.2. Geometric analysis was conducted at 228 individual residential receptors, including 22 residential areas, 217 road receptors, 13 rail receptors and 79 bridleway receptors. Also, geometric analysis was conducted at 12 runway approach paths, two circuit paths and one Air Traffic Control Tower (ATCT) at RAF Waddington, Peacocks Farm, South Hykeham Airfield, South Scarle Airfield and Blackmoor Farm.

1.3. The assessment concludes that:

- Solar reflections are possible at 178 of the 228 residential receptors assessed within the 1km study area. The initial bald-earth scenario identified potential impacts as **High** at 48 receptors, including six residential areas, **Medium** at 19 receptors, including two residential areas, **Low** at 111 receptors, including 10 residential areas, and **None** at the remaining 50 receptors, including three residential areas. Upon reviewing the actual visibility of the receptors, impacts remain **High** at 11 receptors, including one residential area, and **Medium** at three receptors, including one residential area, and reduce to **Low** at 44 receptors, including eight residential areas, and to **None** at all remaining receptors, including 12 residential areas. Once mitigation measures were considered, impacts reduce to **Low** at 36 receptors and to **None** at all remaining receptors. Therefore, overall impacts on residential receptors are considered to be **Low**.

- b. Solar reflections are possible at 215 of the 217 road receptors assessed within the 1km study area. The initial bald-earth scenario identified potential impacts as **High** at 156 receptors, **Low** at 59 receptors and **None** at the remaining two receptors. Upon reviewing the actual visibility of the receptors, glint and glare impacts remain **High** at 30 receptors and reduce **None** for all remaining road receptors. Once mitigation measures were considered, impacts reduce to **None** at all receptors. Therefore, overall impacts are considered to be **None**.
- c. Solar reflections are possible at all the 13 rail receptors assessed within the 1km study area. The initial bald-earth scenario identified potential impacts as **High** at five receptors and **Low** at eight receptors. Upon reviewing the actual visibility of the receptors, glint and glare impacts reduce to **None** for all rail receptors. Therefore, overall impacts on rail receptors are considered to be **None**.
- d. Solar reflections are possible at all the 79 bridleway receptors assessed within the 1km study area. The initial bald-earth scenario identified potential impacts as **High** at 65 receptors and **Low** at 14 receptors. Upon reviewing the actual visibility of the receptors, glint and glare impacts remain **High** at 40 receptors and reduce to **Low** at 15 receptors and to **None** at 24 receptors. Once mitigation measures were considered, impacts reduce to **Low** at 10 receptors and to **None** at all remaining receptors. Therefore, overall impacts on bridleway receptors are considered to be **Low**.
- e. 12 runway approach paths and one ATCT were assessed in detail at RAF Waddington, Peacocks Farm, South Hykeham Airfield, South Scarle Airfield and Blackmoor Farm. Only green glare impacts were predicted for the Runway 20 approach path, eastern circuit path and ATCT at RAF Waddington, the Runway 10 approach path at South Hykeham Airfield and the Runway 06 and 24 approach paths at Blackmoor Farm. Green glare and yellow glare impacts were predicted for the western circuit path at RAF Waddington Runway 08 and 24 approach paths at Peacocks Farm, the Runway 28 and 31 approach paths at South Hykeham Airfield and the Runway 10 approach path at South Scarle Airfield. Green glare is an **acceptable impact** upon runways according to FAA guidance. Upon reviewing the ground elevation profile between the ATCT at RAF Waddington and the Principal Site, the impacts upon the ATCT reduce to **None**. Upon inspection of the type of aircraft using Peacocks Farm and South Hykeham Airfield, time of impact, position of the sun and use of existing pilot mitigation strategies when landing in the direction of the sun, as well as the current UK and US guidance, all impacts at Peacocks Farm, South Hykeham Airfield

and South Scarle Airfield can be deemed **acceptable**. Overall impacts on aviation assets are **acceptable** and **Not Significant**.

- 1.4. **Mitigation** is required due to the impacts found for Residential Receptors 97, 98, 101, 102, 148, 155, 157 – 160, 196 and 197, Road Receptors 13 - 16, 45, 78 - 80, 82 – 84, 98 – 104, 113, 144 - 148 and 177 - 182 and Bridleway Receptors 2 – 6, 8 – 11, 14 – 16, 27 – 38, 54 – 62 and 65 – 71 being **High** or **Medium**. The recommended mitigation measures will also screen the **Low impact** views from Residential Receptors 23, 28, 38 – 41, 81, 82, 100, 156, 161 and 164, and Bridleway Receptors 25, 26, 45, 46 and 75. This includes the hedges and trees along panel boundaries, field boundaries and bridleway boundaries as shown in the **Landscape Mitigation Plan (Drawing No: 23-128-DL100**, presented in **Figure 7.15-1: Landscape Mitigation Plan** as part of the **Framework LEMP [EN010154/APP/7.15]**) being managed to deliver a minimum height at least the same as the upper edge of the panels, which is currently proposed to be a maximum 3.5m.
- 1.5. The effects of glint and glare and their impact on local receptors has been analysed in detail and there is predicted to be **Low** impacts at nine runway approach paths, whilst the remaining aviation receptors are predicted to have **No Impacts**. Impacts upon ground-based receptors are predicted to be **Low** or **None**. Therefore, overall impacts are **Not Significant**.

## 2. INTRODUCTION

### BACKGROUND

2.1. Neo Environmental Ltd has been appointed by AECOM Ltd on behalf of Fosse Green Energy Limited (the ‘Applicant’) to undertake a Glint and Glare Assessment for a proposed solar development with Battery Energy Storage System (BESS) (the “Proposed Development”) on land approximately 9km southwest of Lincoln City Centre.

### PROPOSED DEVELOPMENT DESCRIPTION

2.2. The Proposed Development will comprise the construction, operation and maintenance, and decommissioning of a solar photovoltaic (PV) electricity generating facility, with an on-site Battery Energy Storage System (BESS) and other associated infrastructure, with a total capacity exceeding 50 megawatts (MW), along with an import and export connection to the national transmission network at the proposed National Grid substation near Navenby.

2.3. The DCO Site comprises:

- The Principal Site would comprise the ground mounted solar PV panels, BESS, Onsite Substation, and associated infrastructure; and
- The Cable Corridor would comprise the 400 kilovolt (kV) Grid Connection Cables, linking the Onsite Substation (located within the Principal Site) to the proposed National Grid substation near Navenby, approximately 10km south east of the Principal Site.

2.4. The Principal Site is the focus of this assessment, as this will be where the glint and glare impacts will originate from.

2.5. The BESS will either be distributed throughout the Principal Site (referred to as ‘distributed BESS’ arrangement) or located at a single BESS Compound (referred to as ‘centralised BESS’ arrangement). In case of the distributed BESS arrangement the area of the BESS Compound would be used for the solar PV panels, and from the perspective of glint and glare assessment this presents the worst-case scenario (i.e. the largest amount of solar PV panels that could result in glint and glare). This assessment therefore considered the layout of the Principal Site for the distributed BESS arrangement.

2.6. The Proposed Development considers two options for the solar PV panel arrangement: fixed south facing and single axis tracker. This report assesses both of these options as explained in **section 4**. The Cable Corridor is not considered in the assessment, given it does not incorporate any infrastructure that may lead to potential glint or glare.

## SITE DESCRIPTION

- 2.7. The Principal Site comprises approximately 1,070ha of land contained within mainly agricultural fields. The field boundaries consist of hedgerows and trees. Ground levels within the Principal Site vary from approximately 10m Above Ordnance Datum (AOD) to 31m AOD in the northwestern part of the Principal Site.
- 2.8. The Principal Site is centred at approximate grid reference SK 90388 62514. The wider landscape contains the villages of Thorpe on the Hill, Witham St Hughs, Haddington, Thurlby, and Bassingham, with the Cable Corridor extending towards Navenby. The Proposed Development is wholly located within North Kesteven District, Lincolnshire.

## SCOPE OF REPORT

- 2.9. Although there may be small amounts of glint and glare from the metal structures associated with the solar PV panels, this is not likely to be significant and the main source of glint and glare will be from the solar PV panels themselves and is the focus of this assessment. Since the Cable Corridor comprises below ground infrastructure and does not comprise of reflective surfaces, there is no potential for glint and glare effects, therefore this is not considered further in this assessment.
- 2.10. Solar PV panels are designed to absorb as much light as possible and not to reflect it. However, glint can be produced as a reflection of the sun from the surface of the solar PV panel. This can also be described as a momentary flash. This may be an issue due to visual impact and viewer distraction on ground-based receptors and on aviation.
- 2.11. Glare is significantly less intense in comparison to glint and can be described as a continuous source of bright light, relative to diffused lighting. This is not a direct reflection of the sun, but a reflection of the sky around the sun.
- 2.12. This report focusses on the effects of glint and glare and its impact on local receptors and is supported by the following Figures and Appendices.
  - a. Appendix A: Figures
    - Figure 1A: Residential Receptor Map Overall;
    - Figure 1B: Residential Receptor Map Sheet 1B;
    - Figure 1C: Residential Receptor Map Sheet 1C;
    - Figure 2A: Road Receptor Map Overall;
    - Figure 2B: Road Receptor Map Sheet 2B;

- Figure 2C: Road Receptor Map Sheet 2C;
- Figure 3: Rail Receptor Map;
- Figure 4A: Bridleway Receptor Map Overall;
- Figure 4B: Bridleway Receptor Map Sheet 4B;
- Figure 4C: Bridleway Receptor Map Sheet 4C;
- Figure 5: Site Layout;
- Figure 6: Panel Area Labels;
- Figure 7: RAF Waddington Aerodrome Chart

b. Appendix BA: Residential Receptor Glare Results Group A (Receptors 1 – 80) (5 degrees);

c. Appendix BB: Residential Receptor Glare Results Group B (Receptors 81 - 160) (5 degrees);

d. Appendix BC: Residential Receptor Glare Results Group C (Receptors 161 - 203) (5 degrees);

e. Appendix BD: Residential Receptor Glare Results Group D (Receptors 204 - 228) (5 degrees);

f. Appendix CA: Residential Receptor Glare Results Group A (Receptors 1 – 80) (45 degrees);

g. Appendix CB: Residential Receptor Glare Results Group B (Receptors 81 - 160) (45 degrees);

h. Appendix CC: Residential Receptor Glare Results Group C (Receptors 161 - 203) (45);

i. Appendix CD: Residential Receptor Glare Results Group D (Receptors –204 - 228) (45);

j. Appendix DA: Residential Receptor Glare Results Group A (Receptors 1 – 80) (Tracker);

k. Appendix DB: Residential Receptor Glare Results Group B (Receptors 81 - 160) (Tracker);

l. Appendix DC: Residential Receptor Glare Results Group C (Receptors 161 - 203) (Tracker);

m. Appendix DD: Residential Receptor Glare Results Group D (Receptors –204 - 228) (Tracker);

n. Appendix EA: Road Receptor Glare Results Group A (Receptors 1 – 79) (5 degrees);

- o. Appendix EB: Road Receptor Glare Results Group B (Receptors 80 – 151) (5 degrees);
- p. Appendix EC: Road Receptor Glare Results Group C (receptors 152 – 215) (5 degrees);
- q. Appendix FA: Road Receptor Glare Results Group A (Receptors 1 – 79) (45 degrees);
- r. Appendix FB: Road Receptor Glare Results Group B (Receptors 80 – 151) (45 degrees);
- s. Appendix FC: Road Receptor Glare Results Group C (receptors 152 – 215) (45 degrees);
- t. Appendix GA: Road Receptor Glare Results Group A (Receptors 1 – 79) (Tracker);
- u. Appendix GB: Road Receptor Glare Results Group B (Receptors 80 – 151) (Tracker);
- v. Appendix GC: Road Receptor Glare Results Group C (receptors 152 – 215) (Tracker);
- w. Appendix GD: Road Receptor Glare Results (35 degrees);
- x. Appendix H: Rail Receptor Glare Results (5 degrees);
- y. Appendix I: Rail Receptor Glare Results (45 degrees);
- z. Appendix J: Rail Receptor Glare Results (Tracker);
- aa. Appendix K: Bridleway Receptor Glare Results (5 degrees);
- bb. Appendix L: Bridleway Receptor Glare Results (45 degrees);
- cc. Appendix M: Bridleway Receptor Glare Results (Tracker);
- dd. Appendix N: Aviation Receptor Glare Results (5 degrees);
- ee. Appendix O: Aviation Receptor Glare Results (45 degrees);
- ff. Appendix P: Aviation Receptor Glare Results (Tracker);
- gg. Appendix Q: Visibility Assessment Evidence;
- hh. Appendix R: Ground Elevation Profile; and

ii. Appendix S: Solar Module Glare and Reflectance Technical Memo.

## STATEMENT OF COMPETENCE

2.13. This Glint and Glare Assessment has been produced by David Thomson, Tom Saddington and Michael McGhee of Neo Environmental. Having completed a civil engineering degree in 2012, Michael has produced Glint and Glare assessments for over 1GW of solar farm developments

across the UK and Ireland. Tom has an undergraduate degree in Bioengineering and graduated with an MSc in Environmental and Energy Engineering in January 2020. He has been working on various technical assessments including glint and glare reports for numerous solar farms in Ireland and the UK. David has an undergraduate degree in physics, as well as a MSc in sensor design, a MSc in nanoscience and a Diploma in acoustics and noise control. He is an Environmental Engineer who has worked on numerous Glint and Glare assessments for solar farms across the UK and Ireland.

## DEFINITIONS

- 2.14. This study examined the potential hazard and nuisance effects of glint and glare in relation to ground-based receptors, which includes the occupants of surrounding dwellings as well as road users. The US Federal Aviation Administration (FAA) in their *“Technical Guidance for Evaluating Selected Solar Technologies on Airports”*<sup>1</sup> have defined the terms ‘Glint’ and ‘Glare’ as meaning;
  - a. Glint – *“A momentary flash of bright light”*; and
  - b. Glare – *“A continuous source of bright light”*.
- 2.15. Glint and glare are essentially the unwanted reflection of sunlight from reflective surfaces. This study used a multi-step process of elimination to determine which receptors have the potential to experience the effects of glint and glare. It then examined, using a computer-generated geometric model, the times of the year and the times of the day such effects could occur. This is based on the relative angles between the sun, the panels, and the receptor throughout the year.
- 2.16. The ocular impact upon a receptor will be assessed and used as the basis of categorising the magnitude of impact at each receptor. For the avoidance of doubt specular impact is a term that refers to the impact produced by the PV panels, whilst ocular impact is the impact observed by the observer.

## General Nature of Reflectance from Photovoltaic Panels

- 2.17. In terms of reflectance, solar PV panels are by no means a highly reflective surface. They are designed to absorb sunlight and not to reflect it. Nonetheless, solar PV panels have a flat polished surface that omit ‘specular’ reflectance rather than a ‘diffuse’ reflectance, which would occur from a rough surface. Several studies have shown that solar PV panels (as opposed to Concentrated Solar Power) have similar reflectance characteristics to water, which is much lower than the likes of glass, steel, snow and white concrete by comparison (**See Appendix S**).

---

<sup>1</sup> Harris, Miller, Miller & Hanson Inc. (November 2010). Technical Guidance for Evaluating Selected Solar Technologies on Airports; 3.1.2 Reflectivity. Technical Guidance for Evaluating Selected Solar Technologies on Airports. Available at:

[https://www.faa.gov/airports/environmental/policy\\_guidance/media/airport-solar-guide.pdf](https://www.faa.gov/airports/environmental/policy_guidance/media/airport-solar-guide.pdf)

Similar levels of reflectance can be found in rural environments from the likes of shed roofs and the lines of plastic mulch used in cropping. In terms of the potential for reflectance from solar PV panels to cause hazard and/ or nuisance effects, there have been a number of studies undertaken in respect of schemes in close proximity to airports. The most recent of these was compiled by the Solar Trade Association (STA) in April 2016 and used a number of case studies and expert opinions, including that from Neo. The summary of this report states that "*the STA does not believe that there is cause for concern in relation to the impact of glint and glare from solar PV on aviation and airports...*"<sup>2</sup>.

## Time Zones / Datums

- 2.18. Locations in this report are given in Eastings and Northings using the 'British National Grid' grid reference system unless otherwise stated.
- 2.19. England uses British Summer Time (BST, UTC + 01:00) in the summer months and Greenwich Mean Time (UTC+0) in the winter period. For the purposes of this report all time references are in GMT.

---

<sup>2</sup> Solar Trade Association. (April 2016). Summary of evidence compiled by the Solar Trade Association to help inform the debate around permitted development for non - domestic solar PV in Scotland. Impact of solar PV on aviation and airports. Available at: <http://www.solar-trade.org.uk/wp-content/uploads/2016/04/STA-glint-and-glare-briefing-April-2016-v3.pdf>

### 3. LEGISLATION AND GUIDANCE

3.1. There is no legislation and limited guidance or policy available in the UK at present in relation to the assessment of glint and glare from solar developments. Available UK guidance is reviewed below, in addition to references to international guidance where deemed suitable.

#### NATIONAL PLANNING POLICY GUIDANCE (NPPG) ON RENEWABLE AND LOW CARBON ENERGY (UK)<sup>3</sup>

3.2. Paragraph 013 (Reference ID: 5-013-20150327) sets out planning considerations that relate to large scale ground-mounted solar PV farms. This determines that the deployment of large-scale solar farms can have a negative impact on the rural environment, particularly in undulating landscapes. However, the visual impact of a well-planned and well-screened solar farm can be properly addressed within the landscape if planned sensitively. Considerations to be taken into account by local planning authorities are:

*"The proposal's visual impact, the effect on landscape of glint and glare and on neighbouring uses and aircraft safety;*

*The extent to which there may be additional impacts if solar arrays follow the daily movement of the sun."*

#### NATIONAL POLICY STATEMENT FOR RENEWABLE ENERGY INFRASTRUCTURE (EN-3)<sup>4</sup>

3.3. Section 2.10 of the EN-3 provides the following commentary in relation to Glint and Glare impacts:

*2.10.102 Solar panels are specifically designed to absorb, not reflect, irradiation. However, solar panels may reflect the sun's rays at certain angles, causing glint and glare. Glint is defined as a momentary flash of light that may be produced as a direct reflection of the sun in the solar panel. Glare is a continuous source of excessive brightness experienced by a stationary*

---

<sup>3</sup> NPPG Renewable and Low Carbon Energy. Available at:  
[http://planningguidance.communities.gov.uk/blog/guidance/renewable-and-low-carbon-energy/particular-planning-considerations-for-hydropower-active-solar-technology-solar-farms-and-wind-turbines/#paragraph\\_012](http://planningguidance.communities.gov.uk/blog/guidance/renewable-and-low-carbon-energy/particular-planning-considerations-for-hydropower-active-solar-technology-solar-farms-and-wind-turbines/#paragraph_012)

<sup>4</sup> UK Government, National Policy Statement for renewable energy infrastructure (EN-3). Available at:  
<https://www.gov.uk/government/publications/national-policy-statement-for-renewable-energy-infrastructure-en-3>

*observer located in the path of reflected sunlight from the face of the panel. The effect occurs when the solar panel is stationed between or at an angle of the sun and the receptor.*

*2.10.103 Applicants should map receptors qualitatively to identify potential glint and glare issues and determine if a glint and glare assessment is necessary as part of the application.*

*2.10.104 When a quantitative glint and glare assessment is necessary, applicants are expected to consider the geometric possibility of glint and glare affecting nearby receptors, and provide an assessment of potential impact and impairment based on the angle and duration of incidence and the intensity of the reflection.*

*2.10.105 The extent of reflectivity analysis required to assess potential impacts will depend on the specific project site and design. This may need to account for 'tracking' panels if they are proposed as these may cause differential diurnal and/or seasonal impacts.*

*2.10.106 When a glint and glare assessment is undertaken, the potential for solar PV panels, frames and supports to have a combined reflective quality may need to be assessed, although the glint and glare of the frames and supports is likely to be significantly less than the panels.*

*2.10.108 Solar PV panels are designed to absorb, not reflect, irradiation. However, the Secretary of State should assess the potential impact of glint and glare on nearby homes, motorists, public rights of way, and aviation infrastructure (including aircraft departure and arrival flight paths).*

*2.10.109 Whilst there is some evidence that glint and glare from solar farms can be experienced by pilots and air traffic controllers in certain conditions, there is no evidence that glint and glare from solar farms results in significant impairment on aircraft safety. Therefore, unless a significant impairment can be demonstrated, the Secretary of State is unlikely to give any more than limited weight to claims of aviation interference because of glint and glare from solar farms."*

- 3.4. This Glint and Glare Assessment takes account of impacts upon nearby homes, motorists, railway lines, bridleway and aviation receptors.

## PLANNING GUIDANCE FOR THE DEVELOPMENT OF LARGE-SCALE GROUND MOUNTED SOLAR PV SYSTEMS

- 3.5. As outlined within the BRE document 'Planning Guidance for the Development of Large-Scale Ground Mounted Solar PV Systems'<sup>5</sup>:

---

<sup>5</sup> BRE (2013) *Planning Guidance for the Development of Large Scale Ground Mounted Solar PV Systems*. Available at: [https://www.bre.co.uk/filelibrary/pdf/other\\_pdfs/KN5524\\_Planning\\_Guidance\\_reduced.pdf](https://www.bre.co.uk/filelibrary/pdf/other_pdfs/KN5524_Planning_Guidance_reduced.pdf)

*"Glint may be produced as a direct reflection of the sun in the surface of the solar PV panel. It may be the source of the visual issues regarding viewer distraction. Glare is a continuous source of brightness, relative to diffused lighting. This is not a direct reflection of the sun, but rather a reflection of the bright sky around the sun. Glare is significantly less intense than glint.*

*Solar PV panels are designed to absorb, not reflect, irradiation. However, the sensitivities associated with glint and glare, and the landscape/ visual impact and the potential impact on aircraft safety, should be a consideration. In some instances, it may be necessary to seek a glint and glare assessment as part of a planning application. This may be particularly important if 'tracking' panels are proposed as these may cause differential diurnal and/or seasonal impacts.*

*The potential for solar PV panels, frames and supports to have a combined reflective quality should be assessed. This assessment needs to consider the likely reflective capacity of all of the materials used in the construction of the solar PV farm."*

- 3.6. This Glint and Glare Assessment assesses the overall impact of the Proposed Development onto the local environment.

## INTERIM CAA GUIDANCE – SOLAR PHOTOVOLTAIC SYSTEMS (2010)

- 3.7. There is little guidance on the assessment of glint and glare from solar farms with regards to aviation safety. The Civil Aviation Authority (CAA) has published interim guidance on 'Solar Photovoltaic Systems<sup>6</sup>', they also intend to undertake a review of the potential impacts of solar PV developments upon aviation, however this is yet to be published.
- 3.8. The interim guidance identifies the key safety issues with regards to aviation, including "*glare, dazzling pilots leading them to confuse reflections with aeronautical lights.*" It is outlined that solar farm developers should be aware of the requirements to comply with the Air Navigation Order (ANO), published in 2016 and amended in 2022. In particular, developers should be cognisant of the following articles of the ANO<sup>7</sup>, including:
  - a. **Article 240** – *Endangering safety of an aircraft* – "A person must not recklessly or negligently act in a manner likely to endanger an aircraft, or any person in an aircraft."
  - b. **Article 224** - *Lights liable to endanger* – "A person must not exhibit in the United Kingdom any light which:

---

<sup>6</sup> CAA (2010) Interim CAA Guidance – Solar Photovoltaic Systems. Available at:  
<https://publicapps.caa.co.uk/modalapplication.aspx?catid=1&appid=11&mode=detail&id=4370>

<sup>7</sup> CAA (2016) Air Navigation: The Order and Regulations. Available at: <https://www.caa.co.uk/media/1a2cigrq/air-navigation-order-2016-amended-april-2022-version.pdf>

- *by reason of its glare is liable to endanger aircraft taking off or from landing at an aerodrome; or*
- *by reason of its liability to be mistaken for an aeronautical ground light liable to endanger aircraft.”*

c. **Article 225 – Lights which dazzle or distract** – “A person must not in the United Kingdom direct or shine any light at any aircraft in flight so as to dazzle or distract the pilot of the aircraft.”

3.9. Relevant studies generally agree that there is potential for glint and glare from photovoltaic panels to cause a hazard or nuisance for surrounding receptors, but that the intensity of such reflections is similar to that emanating from still water. This is considerably lower than for other manmade materials such as glass, steel or white concrete (SunPower – 2009).

3.10. These Articles are considered within the assessment of glint and glare for the Proposed Development.

## CAA – CAP738: SAFEGUARDING OF AERODROMES 3<sup>RD</sup> EDITION<sup>8</sup>

3.11. In 2003, the CAA first introduced the CAP738 document to help provide advice and guidance to ensure aerodrome safeguarding. Subsequently, there have been two updates to this document in 2006 and 2020.

3.12. Within the latest edition of CAP738, it outlines that the purpose of the document is to protect an aerodrome and to ensure safe operation. Specifically stating:

*“Its purpose is to protect:*

*Aircraft from the risk of glint and glare e.g. solar panels.”*

3.13. Within the section named as “Appendix C – Solar Photovoltaic Cells”, the following is stated:

***“Policy***

*1. In 2010 the CAA published interim guidance on Solar Photovoltaic Cells (SPCs). At that time, it was agreed that we would review our policy based on research carried out by the Federal Aviation Authorities (FAA) in the United States, in addition to reviewing guidance issued by other National Aviation Authorities. New information and field experience, particularly with respect to compatibility and glare, has resulted in the FAA reviewing its original document ‘Technical Guidance for Evaluating Selected Solar Technologies on Airports’, which is likely to be subject to change, see link;*

<sup>8</sup> Civil Aviation Authority (2020). CAP738 – Safeguarding of Aerodromes 3<sup>rd</sup> Edition. Available at: <https://publicapps.caa.co.uk/docs/33/CAP738%20Issue%203.pdf>

<https://www.federalregister.gov/documents/2013/10/23/2013-24729/interim-policy-faa-review-of-solar-energy-system-projects-on-federally-obligated-airports>

*2. In the United Kingdom there has been a further increase in SPV cells, including some located close to aerodrome boundaries; to date the CAA has not received any detrimental comments or issues of glare at these established sites. Whilst this early indication is encouraging, those responsible for safeguarding should remain vigilant to the possibility."*

3.14. In summary, the above is stating that to date, there has not been any complications on airfields due to glare originating from solar farms across the UK.

## US FEDERAL AVIATION ADMINISTRATION POLICY

3.15. The US Federal Aviation Administration (FAA) in their Solar Guide (Federal Aviation Authority, 2010)<sup>9</sup> incorporates a chapter on the impact and assessment of glint from solar panels. It concludes that (although subject to revision):

*"...evidence suggests that either significant glare is not occurring during times of operation or if glare is occurring, it is not a negative effect and is a minor part of the landscape to which pilots and tower personnel are exposed."*

3.16. The interim policy (Federal Register, 2013)<sup>10</sup> demands that an ocular impact assessment must be assessed at 1-minute intervals from when the sun rises above the horizon until the sun sets below the horizon. Specifically, the developer must use the 'Solar Glare Hazard Analysis Tool' (SGHAT) tool specifically and reference its results as this was developed by the FAA and Sandia National Laboratories as a standard and approved methodology for assessing potential impacts on aviation interests, although it notes other assessment methods may be considered. The SGHAT tool has since been licensed to a private organisation who were also involved in its development and it is the software model used in this assessment.

3.17. Crucially, the policy provides a quantitative threshold that is lacking in the English guidance. This outlines that a solar development will not automatically receive an objection on glint grounds if low intensity glint is visible to pilots on final approach. In other words, low intensity glint with a low potential to form a temporary after-image (Green Glare) would be considered acceptable under US guidance. Due to the lack of legislation and guidance within England, this US document has been utilised as guidance for this report, which is accepted as best practice in the UK with the absence of quantitative guidance.

---

<sup>9</sup> FAA (2010), Technical Guidance for Evaluating Selected Solar Technologies on Airports. Available at [https://www.faa.gov/airports/environmental/policy\\_guidance/media/airport-solar-guide-print.pdf](https://www.faa.gov/airports/environmental/policy_guidance/media/airport-solar-guide-print.pdf)

<sup>10</sup> FAA (2013), Interim Policy, *FAA Review of Solar Energy System Projects on Federally Obligated Airports*. Available at <https://www.federalregister.gov/documents/2013/10/23/2013-24729/interim-policy-faa-review-of-solar-energy-system-projects-on-federally-obligated-airports>

3.18. The FAA guidance states that for a solar PV development to obtain FAA approval or to receive no objection, the following two criteria must be met:

- a. No potential for glint or glare in the existing or planned Air Traffic Control Tower (ATCT); and
- b. No potential for glare (glint) or “low potential for after-image” (Green Glare) along the final approach path for any existing or future runway landing thresholds (including planned or interim phases), as shown by the approved layout plan (ALP). The final approach path is defined as 2 miles from 50 feet above the landing threshold using a standard 3-degree glide path.

3.19. The geometric analysis included later in this report, which defines the extent and time at which glint may occur, is required by the FAA as the methodology to be used when assessing glint and glare impacts on aviation receptors. This report follows the methodology required by the FAA as it offers the most robust assessment method currently available.

## FAA POLICY: REVIEW OF SOLAR ENERGY SYSTEMS PROJECTS ON FEDERALLY - OBLIGATED AIRPORTS<sup>11</sup>

3.20. The FAA updated its Interim Policy from 2013 as part of a commitment to “*update policies and procedures as part of an iterative process as new information and technologies become available.*” The main development regarding Glint and Glare since the Interim Policy is the following:

*“Initially, FAA believed that solar energy systems could introduce a novel glint and glare effect to pilots on final approach. FAA has subsequently concluded that in most cases, the glint and glare from solar energy systems to pilots on final approach is similar to glint and glare pilots routinely experience from water bodies, glass-façade buildings, parking lots, and similar features. However, FAA has continued to receive reports of potential glint and glare from on-airport solar energy systems on personnel working in ATCT cabs.”*

3.21. This is outlining that solar panels are similar to nuisances that are already caused by other existing infrastructure, such as; car parks, glass buildings and water bodies. Furthermore, the ATCT has been outlined as the key receptor to be assessed when determining Glint and Glare impacts from a solar farm.

3.22. Again, in respect of an absence of UK guidance, this is used as the best practice when assessing aviation receptors.

---

<sup>11</sup> FAA (2021). FAA Policy: Review of Solar Energy Systems Projects on Federally – Obligated Airports. Available at: <https://www.federalregister.gov/documents/2021/05/11/2021-09862/federal-aviation-administration-policy-review-of-solar-energy-system-projects-on-federally-obligated>

## REVIEW OF LOCAL PLAN

### Central Lincolnshire Local Plan 2018 - 2040

3.23. The Central Lincolnshire Local Plan (CLLP) 2018 - 2040<sup>12</sup> was adopted by the Central Lincolnshire Joint Strategic Planning Committee (CLJSPC) on 13 April 2023 and it now replaces the 2017 version of the CLLP as the development plan for the City of Lincoln, West Lindsey and North Kesteven District Councils.

3.24. The plan states in **Policy S14: Renewable Energy** that:

*'Proposals for renewable energy schemes, including ancillary development, will be supported where the direct, indirect, individual and cumulative impacts on the following considerations are, or will be made, acceptable. To determine whether it is acceptable, the following tests will have to be met:*

*i. The impacts are acceptable having considered the scale, siting and design, and the consequent impacts on landscape character; visual amenity; biodiversity; geodiversity; flood risk; townscape; heritage assets, their settings and the historic landscape; and highway safety and rail safety; and*

*ii. The impacts are acceptable on aviation and defence navigation system/communications; and*

*iii. The impacts are acceptable on the amenity of sensitive neighbouring uses (including local residents) by virtue of matters such as noise, dust, odour, shadow flicker, air quality and traffic;*

*Testing compliance with part (i) above will be via applicable policies elsewhere in a development plan document for the area (i.e. this Local Plan; a Neighbourhood Plan, if one exists; any applicable policies in a Minerals or Waste Local Plan); and any further guidance set out in a Supplementary Planning Document.*

*In order to test compliance with part (ii) above will require, for relevant proposals, the submission by the applicant of robust evidence of the potential impact on any aviation and defence navigation system/communication, and within such evidence must be documented areas of agreement or disagreement reached with appropriate bodies and organisations responsible for such infrastructure.*

*In order to test compliance with part (iii) above will require, for relevant proposals, the submission by the applicant of a robust assessment of the potential impact on such users, and the mitigation measures proposed to minimise any identified harm'*

---

<sup>12</sup> Central Lincolnshire Local Plan, available at: <https://www.n-kesteven.gov.uk/planning-building/planning/planning-policy/central-lincolnshire-local-plan-2018-2040>

## 4. METHODOLOGY

- 4.1. A desk-based assessment was undertaken to identify when and where glint and glare may be visible at receptors within the vicinity of the Proposed Development, throughout the day and the year.

### SUN POSITION AND REFLECTION MODEL

#### Sun Data Model

- 4.2. The calculations in the solar position calculator are based on equations from Astronomical Algorithms<sup>13</sup>. The sunrise and sunset results are theoretically accurate to within a minute for locations between +/- 72° latitude, and within 10 minutes outside of those latitudes. However, due to variations in atmospheric composition, temperature, pressure and conditions, observed values may vary from calculations.

#### Solar Reflection Model

- 4.3. The position of the sun is calculated at one-minute intervals of a typical year.
- 4.4. In order to determine if a solar reflection will reach a receptor, the following variables are required:
  - a. Sun position;
  - b. Observer location; and
  - c. Tilt, orientation, and extent of the modules in the solar array.
- 4.5. The model assumes that the azimuth and horizontal angle of the sun is the same across the whole Principal Site. This is considered acceptable due to the distance of the sun from the Proposed Development and the minuscule differences in location of the sun over the Principal Site.
- 4.6. Once the position of the sun is known for each time interval, a vector reflection equation determines the reflected sun vector, based on the normal vector of the solar array panels. This assumes that the angle of reflection is equal to the angle of incidence reflected across a normal plane. In this instance, the plane being the vector which the solar panels are facing.
- 4.7. On knowing the vector of the solar reflection, the azimuth is calculated and the horizontal reflection from multiple points within the Principal Site. These are then compared with the

---

<sup>13</sup> Jean Meeus, Astronomical Algorithms (Second Edition), 1999

azimuth and horizontal angle of the receptor from the Principal Site to determine if it is within range to receive solar reflections.

- 4.8. The solar reflection in the model is considered to be specular as a worst-case scenario. In practice, the light from the sun will not be fully reflected as solar panels are designed to absorb light rather than reflect it. The text above and **Appendix S** outlines the reflective properties of solar glass and compares it to other reflective surfaces. Although the exact figures in this report could contain a margin of error, it is included as a visual guide and it agrees with most other reports, in that solar glass has less reflective properties than other types of glass, bodies of water and snow, and that the amount of reflective energy drops as the angle of incidence decreases.
- 4.9. Most modern solar PV panels have a slight surface texture which should have a small effect on diffusing the solar radiation further. However, this has not been modelled in order to represent a the worst-case scenario assessment.
- 4.10. The panel reflectivity has been modelled to assume an anti-reflective coating (ARC), which is the industry standard for solar PV panels and further reduces the reflective properties of the solar PV panels.

### Determination of Ocular Impact

- 4.11. The software used for this assessment is based on the Sandia Laboratories Solar Glare Hazard Analysis Tool (SGHAT). This tool is specifically mentioned in the FAA guidance as the software that should be used in this type of assessment. Again, this is following the current best practice available due to the lack of UK guidance.
- 4.12. Determination of the ocular impact requires knowledge of the direct normal irradiance, solar PV panel reflectance, size and orientation of the array, optical properties of the PV module, and ocular parameters. These values are used to determine the retinal irradiance and subtended source angle used in the ocular hazard plot.
- 4.13. The ocular impact<sup>14</sup> of viewed glare can be classified into three levels based on the retinal irradiance and subtended source angle: low potential for after-image (green), potential for after-image (yellow), and potential for permanent eye damage (red).
- 4.14. Green glare can be ignored when looking at ground based and some aviation receptors. Green glare does not cause temporary flash blindness and happens at an instant with very slight disturbance. As per FAA guidelines, mitigation is only required for green glare when affecting an Air Traffic Control Tower, but not for when affecting pilots. Therefore, it can be assumed that green glare is acceptable for ground-based receptors.

---

<sup>14</sup> Ho, C.K., C.M. Ghanbari, and R.B. Diver, 2011, Methodology to Assess Potential Glint and Glare Hazards From Concentrating Solar Power Plants: Analytical Models and Experimental Validation, *Journal of Solar Energy Engineering-Transactions of the Asme*, 133(3).

- 4.15. The subtended source angle represents the size of the glare viewed by an observer, while the retinal irradiance determines the amount of energy impacting the retina of the observer. Larger source angles can result in glare of high intensity, even if the retinal irradiance is low.
- 4.16. The modelling software outputs a hazard plot for each receptor predicted to be impacted by glare from the PV array. An orange dot is plotted for each minute of glare indicating the irradiance (power density) of the reflected solar light. A yellow dot is plotted to show the irradiance of the Sun when it is viewed directly. The hazard plot shows that the irradiance of the Sun is approximately three orders of magnitude greater than the reflected irradiance, i.e., the power density of solar reflections from photovoltaic panels are approximately 0.1% that of viewing the Sun. Due to the disparity in irradiance, whenever the Sun is observed in the same frame as solar reflections from a PV array, the Sun will be main source of glare impacts upon the observer. In such a case, the impact is deemed to be **Low** as a worst-case scenario.

## Relevant Parameters of the Proposed Development

- 4.17. The photovoltaic panels will either be mounted as a fixed south facing or single axis tracker. The fixed south facing panels are oriented in a southwards direction to maximise solar gain and will remain in a fixed position throughout the day and during the year (i.e. they will not rotate to track the movement of the sun). The panels will face southwards and will be inclined at an angle of between 5 and 45 degrees. The single axis tracker panels will be orientated north south and face in an east-west direction to track the movement of the sun throughout the day, with the fixed south facing angle altering between +60 and -60 degrees.
- 4.18. For the fixed south facing arrangement, at each receptor, 5 and 45 degrees were assessed as this by virtue will capture the worst case at either end of the tilt scale for each receptor. The model output shows the total glare per year at each receptor for the 5 degree and 45 degree model outputs, the worst-case result was then used in the results table and compared against the tracker results for each receptor.
- 4.19. For the single axis tracking arrangement, the model assesses each angle across the day because the tilt will change as it tracks the sun. The angle will start at +60 degrees in the morning and then track through the day to -60 degrees at night in the same way the tracker panels will work.
- 4.20. The height of the panels above ground level is a maximum of 3.5m and points at the top of the panels are used to determine the potential for glint and glare generation.
- 4.21. Both tracker and fixed tilt panels will be assessed as part of the assessment below, with both considered when determining the impact upon a receptor.

## IDENTIFICATION OF RECEPTORS

### Ground Based Receptors

- 4.22. Glint is most likely to impact upon a ground-based receptor close to dusk and dawn, when the sun is at its lowest in the sky. Therefore, any effect would likely occur early in the day or late in the day, reflected to the west at dawn and east at dusk.
- 4.23. A 1km Study Area from the panels was deemed appropriate for the assessment of ground-based receptors as this seemed to contain a good spread of residential and road receptors in most directions from the Principal Site. The further distance a receptor is from a solar farm, the less chance it has of being affected by glint and glare due to scattering of the reflected beam and atmospheric attenuation, in addition to obstructions from ground sources, such as any intervening vegetation or buildings. This is based on best practice and our experience of completing Glint and Glare Assessments across the UK and Ireland.
- 4.24. An observer height of 2m was utilised for residential receptors, as this is a typical height for a ground-floor window. With regards to road users, a receptor height of 1.5m was employed as this is typical of eye level. Rail driver's eye level was assumed to be 2.75m above the rail for signal signing purposes and therefore this is the height used for assessment purposes. Horse rider eye level has been assumed to be 2.5m above ground level for bridleway receptors.
- 4.25. An assessment was undertaken to determine zones where solar reflections will never be directed near ground level.
- 4.26. Where there are several residential receptors within close proximity, a representative dwelling or dwellings is/are chosen for full assessment as the impacts will not vary to any significant degree. Where small groups of receptors have been evident, the receptors on either end of the group have been analysed in detail with the worst-case impacts attributed to that receptor.

### Aviation

- 4.27. Glint is only considered to be an issue with regards to aviation safety when the solar farm lies within close proximity to a runway, particularly when the aircraft is descending to land. This is outlined within the FAA guidance as being the key aviation receptors to assess and is considered best practice in the absence of UK guidance.
- 4.28. Should a solar farm be proposed within the safeguarded zone of an aerodrome, then a full geometric study may be required, which would determine if there is potential for glint and glare at key locations, most likely on the descent to land.
- 4.29. Buffer zones to identify aviation assets vary depending on the safeguarding criteria of that asset. All aerodromes within 30km will be identified, however, generally the detailed assessments are only required within: 20km for large international aerodromes, 10km for military aerodromes and 5km for small aerodromes.

## MAGNITUDE OF IMPACT

### Static Receptors

4.30. Although there is no specific guidance set out to identify the magnitude of impact from solar reflections, the following criteria has been set out for the purposes of this report:

- a. **High** - Solar reflections impacts of over 30 hours per year or over 30 minutes per day.
- b. **Medium** - Solar reflections impacts between 20 and 30 hours per year or between 20 minutes and 30 minutes per day.
- c. **Low** - Solar reflections impacts up to 20 hours per year or up to 20 minutes per day.
- d. **None** - Effects not geometrically possible or no visibility of reflective surfaces likely due to high levels of intervening screening

### Moving Receptors (Road and Rail)

4.31. Again, no specific guidance is available to identify the magnitude of impact from solar reflections on moving receptors except in aviation, however, it is thought that a similar approach should be applied to moving receptors as aviation, based on the ocular impact and the potential for after-image.

4.32. The FAA guidance states that for a solar PV development to obtain FAA approval or to receive no objection, the following criteria must be met:

- a. No potential for glare (glint) or "*low potential for after-image*" along the final approach path for any existing or future runway landing thresholds (including planned or interim phases), as shown by the approved layout plan (ALP).

4.33. The following criteria has been set out for the purposes of this report:

- a. **High** - Solar reflections impacts consisting of any amount of yellow glare.
- b. **Low** - Solar reflections impacts consisting of any amount of only green glare.
- c. **None** - Effects not geometrically possible or no visibility of reflective surfaces likely due to high levels of intervening screening.

4.34. The FAA produced an evaluation of glare as a hazard and concluded in their report<sup>15</sup> that:

---

<sup>15</sup> Federal Aviation Authority, Evaluation of Glare as a Hazard for General Aviation Pilots on Final Approach (2015), Available at <https://libraryonline.erau.edu/online-full-text/faa-aviation-medicine-reports/AM15-12.pdf>

*"The more forward the glare is and the longer the glare duration, the greater the impairment to the pilots' ability to see their instruments and to fly the aircraft. These results taken together suggest that any sources of glare at an airport may be potentially mitigated if the angle of the glare is greater than 25 deg from the direction that the pilot is looking in. We therefore recommend that the design of any solar installation at an airport consider the approach of pilots and ensure that any solar installation that is developed is placed such that they will not have to face glare that is straight ahead of them or within 25 deg of straight ahead during final approach."*

- 4.35. It is reasonable to assume that although this report is assessing pilots vision impairment, it can also be applied to drivers of other road and rail vehicles. Therefore, the driver's field of view will also be analysed where required and if the glare is out with 25 degrees either side of their line of sight then any impacts will reduce to **None**.

## Moving Receptors (Aviation)

### Approach Paths

- 4.36. Each final approach path which has the potential to receive glint is assessed using the SGHAT model. The model assumes an approach bearing on the runway centreline, a 3-degree glide path with the origin 50ft (15.24m) above the runway threshold.
- 4.37. The computer model considers the pilots field of view. The azimuthal field of view (AFOV) or horizontal field of view (HFOV) as it is sometimes referred to, refers to the extents of the pilot's horizontal field of view measured in degrees left and right from directly in front of the cockpit. The vertical field of view (VFOV) refers to the extents of the pilot's vertical field of view measured in degrees from directly in front of the cockpit. The HFOV is modelled at 50 degrees left and right from the front of the cockpit whilst the VFOV is modelled at 30 degrees.
- 4.38. The FAA guidance states that there should be no potential for glare or '*low potential for after-image*' at any existing or future planned runway landing thresholds for the Proposed Development to be acceptable.

### Air Traffic Control Tower (ATCT)

- 4.39. An air traffic controller uses the visual control room to monitor and direct aircraft on the ground, approaching and departing the aerodrome. It is essential that air traffic controllers have a clear unobstructed view of the aviation activity. The key areas on an aerodrome are the views towards the runway thresholds, taxiways and aircraft bays.
- 4.40. The FAA guidance states that no solar reflection towards the ATCT should be produced by a proposed solar development, however, this should be assessed on a site by site case and will depend on the operations at a particular aerodrome.

4.41. In order to determine the impact on the ATCT, the location and height of the tower will need to be fed into the SGHAT model and where there is a potential for 'low potential for After-Image' or more, then mitigation measures will be required.

## Assessment Limitations

4.42. Below is a list of assumptions and limitations of the model and methods used within this report:

- a. The model does not consider obstacles (either man-made or natural) between the observation points and the prescribed solar installation that may obstruct observed glare, such as trees, vegetation, hills, buildings, etc;
- b. The model does not rigorously represent the detailed geometry of a system; detailed features such as gaps between modules, variable height of the PV array, and support structures may impact actual glare results;
- c. Due to variations in atmospheric composition, temperature, pressure and conditions, observed values may vary slightly from calculated positions;
- d. The model does not account for the effects of diffraction; however, buffers are applied as a factor of safety; and
- e. The model assumes clear skies at all times and does not account for meteorological effects such as cloud cover, fog, or any other weather event which may screen the sun.

4.43. Due to these assumptions and limitations the model overestimates the number of minutes of glint and glare which are possible at each receptor and presents the worst-case scenario. Where glint and glare are predicted a visibility assessment is carried out to determine a more accurate, real-world prediction of the impacts.

## 5. BASELINE CONDITIONS

### GROUND BASED RECEPTORS REFLECTION ZONES

- 5.1. Based on the relatively flat topography in the area, solar reflections between five degrees below the horizontal plane to five degrees above it are described as near horizontal. Reflections from the Proposed Development within this arc have the potential to be seen by receptors at or near ground level.
- 5.2. Further analysis showed that this will only occur between the azimuth of 238.92 degrees and 298.18 degrees in the western direction (late day reflections) and 64.36 degrees and 129.27 degrees in the eastern direction (morning reflections) and therefore any ground-based receptor outside these arcs will not have any impact from solar reflections.
- 5.3. **Figure 1A, 2 and 3 of Appendix A** show the respective study areas whilst also subtracting from this the areas where solar reflections will not impact on ground-based receptors due to the reasons set out in **paragraphs 5.1 to 5.2**.

#### Residential Receptors

- 5.4. Residential receptors located within 1km of the Principal Site have been identified (**Table 1**). Glint was assumed to be possible if the receptor is located within the ground-based receptor zones as outlined previously.
- 5.5. There are 10 residential receptors (Receptors 204 - 213) which are within the no-reflection zones and are clearly identifiable in **Figure 1A: Appendix A**. The process of how these are calculated is explained in **paragraphs 5.1 to 5.2** of this report.
- 5.6. As per the methodology section, where there are a number of residential receptors within close proximity, a representative dwelling or dwellings is/are chosen for detailed analysis as the impacts will not vary to any significant degree. Where small groups of receptors are evident, the receptors on either end of the group have been assessed in detail. The number in brackets indicates which residential area the receptor belongs.

**Table 1: Residential Based Receptors**

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 1        | 487963  | 365441   | Yes                      |
| 2        | 487978  | 365406   | Yes                      |
| 3        | 488253  | 365492   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 4 (1)    | 488070  | 365269   | Yes                      |
| 5 (1)    | 488225  | 365212   | Yes                      |
| 6        | 488225  | 365005   | Yes                      |
| 7        | 489304  | 365747   | Yes                      |
| 8        | 487179  | 364099   | Yes                      |
| 9        | 487216  | 364196   | Yes                      |
| 10       | 487317  | 364132   | Yes                      |
| 11       | 487443  | 364248   | Yes                      |
| 12       | 487579  | 364244   | Yes                      |
| 13 (2)   | 487697  | 364576   | Yes                      |
| 14 (2)   | 487714  | 364377   | Yes                      |
| 15 (2)   | 488000  | 364342   | Yes                      |
| 16 (2)   | 488004  | 364188   | Yes                      |
| 17 (2)   | 487901  | 364108   | Yes                      |
| 18 (2)   | 487930  | 363841   | Yes                      |
| 19 (2)   | 488065  | 363805   | Yes                      |
| 20       | 487650  | 363633   | Yes                      |
| 21       | 488188  | 363726   | Yes                      |
| 22       | 488319  | 363762   | Yes                      |
| 23 (3)   | 488400  | 364004   | Yes                      |
| 24 (3)   | 488421  | 363943   | Yes                      |
| 25       | 488440  | 363675   | Yes                      |
| 26       | 488495  | 363772   | Yes                      |
| 27       | 488575  | 363728   | Yes                      |
| 28       | 489433  | 364465   | Yes                      |
| 29       | 489737  | 364087   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 30       | 487862  | 363142   | Yes                      |
| 31       | 488023  | 363088   | Yes                      |
| 32       | 488084  | 363109   | Yes                      |
| 33       | 488127  | 363111   | Yes                      |
| 34       | 488174  | 363104   | Yes                      |
| 35       | 488786  | 362890   | Yes                      |
| 36       | 488861  | 362941   | Yes                      |
| 37       | 489019  | 363064   | Yes                      |
| 38 (4)   | 490121  | 364237   | Yes                      |
| 39 (4)   | 490193  | 364119   | Yes                      |
| 40 (4)   | 490220  | 364005   | Yes                      |
| 41 (4)   | 490182  | 363942   | Yes                      |
| 42       | 491200  | 366115   | Yes                      |
| 43 (5)   | 491341  | 366078   | Yes                      |
| 44 (5)   | 491449  | 366057   | Yes                      |
| 45 (5)   | 491545  | 366045   | Yes                      |
| 46       | 491653  | 366024   | Yes                      |
| 47       | 491699  | 366024   | Yes                      |
| 48       | 491079  | 365997   | Yes                      |
| 49       | 491024  | 365971   | Yes                      |
| 50 (6)   | 491035  | 365884   | Yes                      |
| 51 (6)   | 491017  | 365805   | Yes                      |
| 52 (7)   | 490416  | 365606   | Yes                      |
| 53 (7)   | 490500  | 365664   | Yes                      |
| 54 (7)   | 490658  | 365649   | Yes                      |
| 55 (7)   | 490790  | 365643   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 56 (7)   | 490802  | 365783   | Yes                      |
| 57 (7)   | 490926  | 365708   | Yes                      |
| 58 (7)   | 491030  | 365633   | Yes                      |
| 59 (7)   | 491007  | 365479   | Yes                      |
| 60 (7)   | 490997  | 365381   | Yes                      |
| 61 (7)   | 491108  | 365323   | Yes                      |
| 62 (7)   | 490882  | 365236   | Yes                      |
| 63 (7)   | 490816  | 365152   | Yes                      |
| 64 (7)   | 490763  | 365410   | Yes                      |
| 65 (7)   | 490653  | 365451   | Yes                      |
| 66 (7)   | 490518  | 365487   | Yes                      |
| 67 (7)   | 490452  | 365526   | Yes                      |
| 68 (8)   | 491312  | 365721   | Yes                      |
| 69 (8)   | 491399  | 365694   | Yes                      |
| 70 (8)   | 491329  | 365577   | Yes                      |
| 71       | 490487  | 365240   | Yes                      |
| 72       | 490931  | 364476   | Yes                      |
| 73 (9)   | 490909  | 364374   | Yes                      |
| 74 (9)   | 490940  | 364292   | Yes                      |
| 75       | 490868  | 364241   | Yes                      |
| 76       | 491022  | 364167   | Yes                      |
| 77       | 491116  | 364088   | Yes                      |
| 78       | 491529  | 364544   | Yes                      |
| 79       | 491987  | 363881   | Yes                      |
| 80       | 492065  | 363641   | Yes                      |
| 81       | 490603  | 363298   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 82       | 490525  | 363206   | Yes                      |
| 83       | 489864  | 636133   | Yes                      |
| 84       | 488267  | 362524   | Yes                      |
| 85       | 488297  | 362544   | Yes                      |
| 86       | 488309  | 362553   | Yes                      |
| 87 (10)  | 489141  | 362357   | Yes                      |
| 88 (10)  | 489142  | 362245   | Yes                      |
| 89 (10)  | 489181  | 362168   | Yes                      |
| 90 (10)  | 489372  | 362168   | Yes                      |
| 91 (10)  | 489587  | 362328   | Yes                      |
| 92 (10)  | 489789  | 362483   | Yes                      |
| 93 (10)  | 489938  | 362506   | Yes                      |
| 94 (10)  | 489978  | 362577   | Yes                      |
| 95 (10)  | 489987  | 362833   | Yes                      |
| 96 (10)  | 490126  | 362840   | Yes                      |
| 97 (10)  | 490187  | 362791   | Yes                      |
| 98 (10)  | 490203  | 362667   | Yes                      |
| 99 (10)  | 490140  | 362539   | Yes                      |
| 100 (10) | 490158  | 362394   | Yes                      |
| 101 (10) | 490171  | 362296   | Yes                      |
| 102 (10) | 490185  | 362205   | Yes                      |
| 103 (10) | 489961  | 362214   | Yes                      |
| 104 (10) | 489761  | 362223   | Yes                      |
| 105 (10) | 489549  | 362196   | Yes                      |
| 106 (10) | 489573  | 362091   | Yes                      |
| 107 (10) | 489637  | 361934   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 108 (10) | 489711  | 361790   | Yes                      |
| 109 (10) | 489751  | 361698   | Yes                      |
| 110 (10) | 489610  | 361694   | Yes                      |
| 111 (10) | 489506  | 361669   | Yes                      |
| 112 (10) | 489488  | 361740   | Yes                      |
| 113 (10) | 489339  | 361713   | Yes                      |
| 114 (10) | 489239  | 361699   | Yes                      |
| 115 (10) | 489163  | 361822   | Yes                      |
| 116 (10) | 489139  | 361969   | Yes                      |
| 117 (11) | 491495  | 363126   | Yes                      |
| 118 (11) | 491386  | 362966   | Yes                      |
| 119 (11) | 491669  | 363040   | Yes                      |
| 120 (11) | 491569  | 362900   | Yes                      |
| 121      | 491904  | 362663   | Yes                      |
| 122      | 491650  | 362199   | Yes                      |
| 123 (12) | 491796  | 362404   | Yes                      |
| 124 (12) | 491858  | 362453   | Yes                      |
| 125      | 492021  | 362475   | Yes                      |
| 126 (13) | 492420  | 362744   | Yes                      |
| 127 (13) | 492180  | 362747   | Yes                      |
| 128 (13) | 492248  | 362677   | Yes                      |
| 129 (13) | 492275  | 362579   | Yes                      |
| 130 (13) | 492466  | 362672   | Yes                      |
| 131 (13) | 492586  | 362650   | Yes                      |
| 132      | 492578  | 362508   | Yes                      |
| 133      | 492596  | 362450   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 134 (14) | 488938  | 361375   | Yes                      |
| 135 (14) | 489077  | 361408   | Yes                      |
| 136 (15) | 490771  | 361777   | Yes                      |
| 137 (15) | 490843  | 361753   | Yes                      |
| 138 (15) | 490801  | 361639   | Yes                      |
| 139 (16) | 490626  | 361482   | Yes                      |
| 140 (16) | 490660  | 361421   | Yes                      |
| 141 (16) | 490722  | 361371   | Yes                      |
| 142 (16) | 490797  | 361455   | Yes                      |
| 143 (17) | 490693  | 361191   | Yes                      |
| 144 (17) | 490696  | 361110   | Yes                      |
| 145      | 491117  | 360791   | Yes                      |
| 146      | 491563  | 361095   | Yes                      |
| 147      | 491616  | 361067   | Yes                      |
| 148      | 491811  | 361038   | Yes                      |
| 149      | 493266  | 361294   | Yes                      |
| 150      | 493322  | 361266   | Yes                      |
| 151      | 493174  | 360962   | Yes                      |
| 152 (18) | 491565  | 360729   | Yes                      |
| 153 (18) | 491498  | 360657   | Yes                      |
| 154 (18) | 491565  | 360620   | Yes                      |
| 155      | 491708  | 360605   | Yes                      |
| 156      | 492287  | 360549   | Yes                      |
| 157      | 489986  | 360519   | Yes                      |
| 158      | 490606  | 360544   | Yes                      |
| 159      | 491040  | 360500   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 160      | 491089  | 360525   | Yes                      |
| 161      | 492182  | 360406   | Yes                      |
| 162      | 489156  | 360021   | Yes                      |
| 163      | 489150  | 359996   | Yes                      |
| 164      | 489979  | 359919   | Yes                      |
| 165      | 492346  | 360030   | Yes                      |
| 166      | 492449  | 360035   | Yes                      |
| 167      | 492974  | 359777   | Yes                      |
| 168      | 493675  | 359717   | Yes                      |
| 169 (19) | 491234  | 360450   | Yes                      |
| 170 (19) | 491369  | 360436   | Yes                      |
| 171 (19) | 491475  | 360410   | Yes                      |
| 172 (19) | 491533  | 360391   | Yes                      |
| 173 (19) | 491529  | 360301   | Yes                      |
| 174 (19) | 491529  | 360212   | Yes                      |
| 175 (19) | 491553  | 360024   | Yes                      |
| 176 (19) | 491465  | 359831   | Yes                      |
| 177 (19) | 491443  | 359682   | Yes                      |
| 178 (19) | 491248  | 359705   | Yes                      |
| 179 (19) | 491145  | 359715   | Yes                      |
| 180 (19) | 491012  | 359725   | Yes                      |
| 181 (19) | 491026  | 359559   | Yes                      |
| 182 (19) | 490897  | 359394   | Yes                      |
| 183 (19) | 490723  | 359417   | Yes                      |
| 184 (19) | 490728  | 359542   | Yes                      |
| 185 (19) | 490769  | 359697   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 186 (19) | 490898  | 359831   | Yes                      |
| 187 (19) | 490907  | 359968   | Yes                      |
| 188 (19) | 490923  | 360097   | Yes                      |
| 189 (19) | 490942  | 360215   | Yes                      |
| 190 (19) | 491013  | 360263   | Yes                      |
| 191 (19) | 491108  | 360228   | Yes                      |
| 192 (19) | 491193  | 360320   | Yes                      |
| 193      | 491210  | 359344   | Yes                      |
| 194 (20) | 488311  | 359269   | Yes                      |
| 195 (20) | 488454  | 359222   | Yes                      |
| 196 (21) | 488760  | 359326   | Yes                      |
| 197 (21) | 488740  | 359231   | Yes                      |
| 198 (21) | 488860  | 359128   | Yes                      |
| 199 (21) | 489018  | 359093   | Yes                      |
| 200 (21) | 489166  | 359055   | Yes                      |
| 201 (21) | 488983  | 358929   | Yes                      |
| 202 (21) | 488764  | 359088   | Yes                      |
| 203 (21) | 488600  | 359126   | Yes                      |
| 204 (22) | 488992  | 362902   | Yes                      |
| 205 (22) | 489088  | 362974   | Yes                      |
| 206 (22) | 489220  | 363056   | Yes                      |
| 207 (22) | 489329  | 363139   | Yes                      |
| 208 (22) | 489436  | 363225   | Yes                      |
| 209 (22) | 489525  | 363293   | Yes                      |
| 210 (22) | 489602  | 363364   | Yes                      |
| 211 (22) | 489682  | 363412   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 212 (22) | 489768  | 363467   | Yes                      |
| 213 (22) | 489860  | 363387   | Yes                      |
| 214 (22) | 489921  | 363299   | Yes                      |
| 215 (22) | 489789  | 363144   | Yes                      |
| 216 (22) | 489873  | 363003   | Yes                      |
| 217 (22) | 490078  | 363081   | Yes                      |
| 218 (22) | 490154  | 363039   | Yes                      |
| 219 (22) | 490102  | 362915   | Yes                      |
| 220 (22) | 489936  | 362842   | Yes                      |
| 221 (22) | 489932  | 362722   | Yes                      |
| 222 (22) | 489711  | 362865   | Yes                      |
| 223 (22) | 489598  | 362892   | Yes                      |
| 224 (22) | 489449  | 362877   | Yes                      |
| 225 (22) | 489302  | 362818   | Yes                      |
| 226 (22) | 489300  | 362703   | Yes                      |
| 227 (22) | 489126  | 362691   | Yes                      |
| 228 (22) | 489015  | 362722   | Yes                      |
| 229 (23) | 488956  | 366255   | No                       |
| 230 (23) | 489230  | 366155   | No                       |
| 231 (24) | 490225  | 366479   | No                       |
| 232 (24) | 490275  | 366371   | No                       |
| 233 (24) | 490248  | 366185   | No                       |
| 234 (24) | 490355  | 366094   | No                       |
| 235 (25) | 489998  | 365984   | No                       |
| 236 (25) | 490149  | 365957   | No                       |
| 237 (26) | 490838  | 366078   | No                       |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 238 (26) | 490867  | 366076   | No                       |

## Road / Rail Receptors

5.7. There are 44 roads within the 1km Study Area that require a detailed Glint and Glare Assessment: A46, A1434, Moor Lane (West), Halfway House Lane, Green Lane, Southern Lane, Morton Lane, Beehive Lane, Morton Road, Moor Lane (North), Lincoln Lane, Middle Lane, Main Street, Little Thorpe Lane, Fosse Lane, Main Road, Bridge Road (North), Moor Lane (South), Norton Lane, Butts Lane, South Hykeham Road, Dovecote Lane, Bridge Road (East), Bassingham Road (West), Thurlby Road, Croft Lane, Harmston Road, Chapel Lane, Church Road, Bassingham Road (East), Lincoln Road, Carlton Road, Linga Lane, Pasture Lane, Clay Lane, Newark Road (West), Main Street, Old Brikkil Lane, Rinks Lane, Newark Road (East), Eagle Lane, Station Road, Norton Road (South) and Norton Disney Road. There are some minor roads that serve dwellings; however, these have been dismissed as vehicle users of these roads will likely be travelling at low speeds and, therefore, there is a negligible risk of safety impacts resulting from glint and glare of the Proposed Development.

5.8. The ground receptor no-reflection zones are clearly identifiable on **Figure 2: Appendix A** and the process of how these are calculated is explained in **paragraphs 5.1 to 5.2** of this report.

5.9. **Table 2** shows a list of receptors points within the study area which are 200 apart.

**Table 2: Road Based Receptors**

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 1        | 488287  | 362472   | Yes                      |
| 2        | 488448  | 362593   | Yes                      |
| 3        | 488616  | 362704   | Yes                      |
| 4        | 488783  | 362815   | Yes                      |
| 5        | 488937  | 362940   | Yes                      |
| 6        | 489097  | 363056   | Yes                      |
| 7        | 489255  | 363175   | Yes                      |
| 8        | 489415  | 363300   | Yes                      |
| 9        | 489566  | 363412   | Yes                      |
| 10       | 489720  | 363534   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 11       | 489876  | 363647   | Yes                      |
| 12       | 490021  | 363755   | Yes                      |
| 13       | 490190  | 363880   | Yes                      |
| 14       | 490339  | 363998   | Yes                      |
| 15       | 490493  | 364112   | Yes                      |
| 16       | 490643  | 364222   | Yes                      |
| 17       | 490801  | 364341   | Yes                      |
| 18       | 490953  | 364447   | Yes                      |
| 19       | 491115  | 364557   | Yes                      |
| 20       | 491277  | 364676   | Yes                      |
| 21       | 491426  | 364786   | Yes                      |
| 22       | 491584  | 364896   | Yes                      |
| 23       | 491740  | 365016   | Yes                      |
| 24       | 491898  | 365129   | Yes                      |
| 25       | 492048  | 365259   | Yes                      |
| 26       | 492006  | 365451   | Yes                      |
| 27       | 491944  | 365646   | Yes                      |
| 28       | 491880  | 365833   | Yes                      |
| 29       | 492216  | 365368   | Yes                      |
| 30       | 487597  | 363197   | Yes                      |
| 31       | 487792  | 363175   | Yes                      |
| 32       | 487930  | 363100   | Yes                      |
| 33       | 488129  | 363088   | Yes                      |
| 34       | 488324  | 363052   | Yes                      |
| 35       | 488523  | 363016   | Yes                      |
| 36       | 488718  | 362969   | Yes                      |
| 37       | 488926  | 362724   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 38       | 487811  | 363309   | Yes                      |
| 39       | 487767  | 363502   | Yes                      |
| 40       | 487724  | 363697   | Yes                      |
| 41       | 487680  | 363891   | Yes                      |
| 42       | 487650  | 364089   | Yes                      |
| 43       | 487638  | 364289   | Yes                      |
| 44       | 487658  | 364488   | Yes                      |
| 45       | 487683  | 364688   | Yes                      |
| 46       | 487700  | 364860   | Yes                      |
| 47       | 487871  | 364956   | Yes                      |
| 48       | 488011  | 365090   | Yes                      |
| 49       | 488163  | 365212   | Yes                      |
| 50       | 488025  | 365347   | Yes                      |
| 51       | 487950  | 365523   | Yes                      |
| 52       | 487915  | 365711   | Yes                      |
| 53       | 488065  | 365531   | Yes                      |
| 54       | 488209  | 365661   | Yes                      |
| 55       | 488358  | 365783   | Yes                      |
| 56       | 488480  | 365935   | Yes                      |
| 57       | 488583  | 366094   | Yes                      |
| 58       | 487497  | 364200   | Yes                      |
| 59       | 487301  | 364162   | Yes                      |
| 60       | 491111  | 366086   | Yes                      |
| 61       | 491301  | 366055   | Yes                      |
| 62       | 491498  | 366020   | Yes                      |
| 63       | 491695  | 365987   | Yes                      |
| 64       | 490405  | 365652   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 65       | 490581  | 365639   | Yes                      |
| 66       | 490780  | 365624   | Yes                      |
| 67       | 490975  | 365576   | Yes                      |
| 68       | 491162  | 365533   | Yes                      |
| 69       | 491366  | 365529   | Yes                      |
| 70       | 491550  | 365454   | Yes                      |
| 71       | 491725  | 365376   | Yes                      |
| 72       | 491901  | 365299   | Yes                      |
| 73       | 490688  | 365487   | Yes                      |
| 74       | 491058  | 365938   | Yes                      |
| 75       | 490993  | 365773   | Yes                      |
| 76       | 490881  | 365466   | Yes                      |
| 77       | 490863  | 365270   | Yes                      |
| 78       | 490842  | 365066   | Yes                      |
| 79       | 490858  | 364865   | Yes                      |
| 80       | 490828  | 364674   | Yes                      |
| 81       | 490745  | 364495   | Yes                      |
| 82       | 490900  | 364131   | Yes                      |
| 83       | 491048  | 363995   | Yes                      |
| 84       | 491108  | 363811   | Yes                      |
| 85       | 491138  | 363612   | Yes                      |
| 86       | 491167  | 363421   | Yes                      |
| 87       | 491181  | 363217   | Yes                      |
| 88       | 491171  | 363020   | Yes                      |
| 89       | 491121  | 362829   | Yes                      |
| 90       | 491045  | 362677   | Yes                      |
| 91       | 490870  | 362681   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 92       | 490826  | 362486   | Yes                      |
| 93       | 490757  | 362309   | Yes                      |
| 94       | 490749  | 362107   | Yes                      |
| 95       | 490746  | 361908   | Yes                      |
| 96       | 490742  | 361706   | Yes                      |
| 97       | 490719  | 361508   | Yes                      |
| 98       | 490530  | 361463   | Yes                      |
| 99       | 490328  | 361483   | Yes                      |
| 100      | 490126  | 361486   | Yes                      |
| 101      | 489933  | 361492   | Yes                      |
| 102      | 489734  | 361492   | Yes                      |
| 103      | 489529  | 361482   | Yes                      |
| 104      | 489338  | 361464   | Yes                      |
| 105      | 489181  | 361501   | Yes                      |
| 106      | 489146  | 361699   | Yes                      |
| 107      | 489109  | 361891   | Yes                      |
| 108      | 489093  | 362090   | Yes                      |
| 109      | 489001  | 361414   | Yes                      |
| 110      | 488808  | 361362   | Yes                      |
| 111      | 488614  | 361313   | Yes                      |
| 112      | 490849  | 364518   | Yes                      |
| 113      | 491261  | 363314   | Yes                      |
| 114      | 491423  | 363199   | Yes                      |
| 115      | 491562  | 363064   | Yes                      |
| 116      | 491685  | 363008   | Yes                      |
| 117      | 491799  | 362901   | Yes                      |
| 118      | 491888  | 362729   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 119      | 491980  | 362545   | Yes                      |
| 120      | 491295  | 362944   | Yes                      |
| 121      | 491485  | 362968   | Yes                      |
| 122      | 491867  | 363062   | Yes                      |
| 123      | 492033  | 363157   | Yes                      |
| 124      | 492041  | 363340   | Yes                      |
| 125      | 492036  | 363540   | Yes                      |
| 126      | 492047  | 363732   | Yes                      |
| 127      | 490678  | 361328   | Yes                      |
| 128      | 490676  | 361115   | Yes                      |
| 129      | 490742  | 360912   | Yes                      |
| 130      | 490702  | 360717   | Yes                      |
| 131      | 490652  | 360536   | Yes                      |
| 132      | 490841  | 360506   | Yes                      |
| 133      | 491038  | 360486   | Yes                      |
| 134      | 491243  | 360474   | Yes                      |
| 135      | 491213  | 360328   | Yes                      |
| 136      | 492557  | 362710   | Yes                      |
| 137      | 492359  | 362707   | Yes                      |
| 138      | 492227  | 362636   | Yes                      |
| 139      | 492410  | 362642   | Yes                      |
| 140      | 492217  | 362588   | Yes                      |
| 141      | 492043  | 362508   | Yes                      |
| 142      | 491865  | 362434   | Yes                      |
| 143      | 491710  | 362310   | Yes                      |
| 144      | 491590  | 362150   | Yes                      |
| 145      | 491566  | 361990   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 146      | 491615  | 361828   | Yes                      |
| 147      | 491535  | 361655   | Yes                      |
| 148      | 491527  | 361461   | Yes                      |
| 149      | 491520  | 361260   | Yes                      |
| 150      | 491524  | 361063   | Yes                      |
| 151      | 491583  | 360916   | Yes                      |
| 152      | 491538  | 360722   | Yes                      |
| 153      | 491499  | 360529   | Yes                      |
| 154      | 491447  | 360343   | Yes                      |
| 155      | 491376  | 360211   | Yes                      |
| 156      | 491294  | 360038   | Yes                      |
| 157      | 491190  | 359886   | Yes                      |
| 158      | 491032  | 359759   | Yes                      |
| 159      | 490993  | 359571   | Yes                      |
| 160      | 490915  | 359386   | Yes                      |
| 161      | 490821  | 359207   | Yes                      |
| 162      | 490848  | 359007   | Yes                      |
| 163      | 491577  | 360197   | Yes                      |
| 164      | 491768  | 360217   | Yes                      |
| 165      | 491830  | 360072   | Yes                      |
| 166      | 492038  | 360034   | Yes                      |
| 167      | 492231  | 360017   | Yes                      |
| 168      | 492430  | 360020   | Yes                      |
| 169      | 492625  | 360003   | Yes                      |
| 170      | 492800  | 360015   | Yes                      |
| 171      | 492995  | 359971   | Yes                      |
| 172      | 493148  | 359895   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 173      | 493334  | 359832   | Yes                      |
| 174      | 493471  | 359747   | Yes                      |
| 175      | 493624  | 359656   | Yes                      |
| 176      | 490568  | 360360   | Yes                      |
| 177      | 490512  | 360170   | Yes                      |
| 178      | 490446  | 359982   | Yes                      |
| 179      | 490429  | 359793   | Yes                      |
| 180      | 490328  | 359660   | Yes                      |
| 181      | 490153  | 359636   | Yes                      |
| 182      | 489987  | 359632   | Yes                      |
| 183      | 489813  | 359514   | Yes                      |
| 184      | 489653  | 359395   | Yes                      |
| 185      | 489489  | 359283   | Yes                      |
| 186      | 489311  | 359223   | Yes                      |
| 187      | 489192  | 359099   | Yes                      |
| 188      | 488272  | 359266   | Yes                      |
| 189      | 488455  | 359190   | Yes                      |
| 190      | 488645  | 359136   | Yes                      |
| 191      | 488839  | 359103   | Yes                      |
| 192      | 489030  | 359060   | Yes                      |
| 193      | 491065  | 359389   | Yes                      |
| 194      | 491229  | 359303   | Yes                      |
| 195      | 491371  | 359168   | Yes                      |
| 196      | 490108  | 358665   | Yes                      |
| 197      | 490226  | 358812   | Yes                      |
| 198      | 490348  | 358962   | Yes                      |
| 199      | 490445  | 359076   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 200      | 490577  | 359217   | Yes                      |
| 201      | 490692  | 359378   | Yes                      |
| 202      | 490808  | 359542   | Yes                      |
| 203      | 490863  | 359734   | Yes                      |
| 204      | 491231  | 359732   | Yes                      |
| 205      | 491430  | 359737   | Yes                      |
| 206      | 491577  | 359661   | Yes                      |
| 207      | 491773  | 359639   | Yes                      |
| 208      | 491967  | 359637   | Yes                      |
| 209      | 488314  | 360698   | Yes                      |
| 210      | 488382  | 360509   | Yes                      |
| 211      | 488427  | 360314   | Yes                      |
| 212      | 488525  | 360138   | Yes                      |
| 213      | 488583  | 359953   | Yes                      |
| 214      | 488617  | 359757   | Yes                      |
| 215      | 488664  | 359567   | Yes                      |
| 216      | 488759  | 359447   | Yes                      |
| 217      | 488723  | 359250   | Yes                      |
| 218      | 488685  | 366264   | No                       |
| 219      | 488863  | 366363   | No                       |
| 220      | 489027  | 366260   | No                       |
| 221      | 489197  | 366155   | No                       |
| 222      | 489388  | 366099   | No                       |
| 223      | 489579  | 366059   | No                       |
| 224      | 489775  | 366015   | No                       |
| 225      | 489968  | 365973   | No                       |
| 226      | 490169  | 365938   | No                       |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 227      | 490338  | 366036   | No                       |
| 228      | 490527  | 366075   | No                       |
| 229      | 490723  | 366096   | No                       |
| 230      | 490919  | 366096   | No                       |
| 231      | 490201  | 366509   | No                       |
| 232      | 490260  | 366318   | No                       |
| 233      | 490319  | 366126   | No                       |
| 234      | 490376  | 365845   | No                       |
| 235      | 489140  | 358953   | No                       |
| 236      | 489115  | 358763   | No                       |
| 237      | 489112  | 358570   | No                       |
| 238      | 488932  | 358524   | No                       |
| 239      | 489234  | 358672   | No                       |
| 240      | 489409  | 358706   | No                       |
| 241      | 489604  | 358661   | No                       |
| 242      | 489786  | 358605   | No                       |
| 243      | 489977  | 358537   | No                       |

5.10. There is one railway line, the Nottingham to Lincoln Line, within 1km of the Principal Site that requires a detailed Glint and Glare Assessment.

5.11. The ground receptor no-reflection zones are clearly identifiable on **Figure 3: Appendix A** and the process of how these are calculated is explained in **paragraphs 5.1 to 5.2** of this report.

5.12. **Table 3** shows a list of receptors points within the Study Area which are 200m apart.

**Table 3: Rail Based Receptors**

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 1        | 487057  | 364582   | Yes                      |
| 2        | 487205  | 364718   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 3        | 487353  | 364852   | Yes                      |
| 4        | 487501  | 364988   | Yes                      |
| 5        | 487647  | 365120   | Yes                      |
| 6        | 487794  | 365257   | Yes                      |
| 7        | 487941  | 365393   | Yes                      |
| 8        | 488087  | 365528   | Yes                      |
| 9        | 488233  | 365664   | Yes                      |
| 10       | 488388  | 365787   | Yes                      |
| 11       | 488548  | 365900   | Yes                      |
| 12       | 488717  | 366007   | Yes                      |
| 13       | 488892  | 366105   | Yes                      |
| 14       | 489075  | 366188   | No                       |
| 15       | 489261  | 366257   | No                       |
| 16       | 489449  | 366313   | No                       |
| 17       | 489645  | 366358   | No                       |
| 18       | 489837  | 366404   | No                       |
| 19       | 490034  | 366451   | No                       |
| 20       | 490225  | 366494   | No                       |

## Bridleway Receptors

5.13. All bridleways within 1km of the Proposed Development have been considered. Other Public Right of Ways (PRoWs) have not been considered as the only PRoW with potential safety impacts because of glint and glare are bridleways due to the horse riders.

5.14. The ground receptor no-reflection zones are clearly identifiable on **Figure 4A: Appendix A** and the process of how these are calculated is explained in **paragraphs 5.1 to 5.2** of this report.

5.15. **Table 4** shows a list of receptors points within the study area which are 200m apart.

Table 4: Bridleway Based Receptors

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 1        | 488244  | 364983   | Yes                      |
| 2        | 488243  | 364790   | Yes                      |
| 3        | 488219  | 364600   | Yes                      |
| 4        | 488297  | 364415   | Yes                      |
| 5        | 488365  | 364235   | Yes                      |
| 6        | 488407  | 364038   | Yes                      |
| 7        | 489196  | 365662   | Yes                      |
| 8        | 489249  | 365469   | Yes                      |
| 9        | 489374  | 365386   | Yes                      |
| 10       | 489567  | 365430   | Yes                      |
| 11       | 489753  | 365492   | Yes                      |
| 12       | 490130  | 365543   | Yes                      |
| 13       | 490331  | 365528   | Yes                      |
| 14       | 489503  | 365325   | Yes                      |
| 15       | 489581  | 365146   | Yes                      |
| 16       | 489596  | 364952   | Yes                      |
| 17       | 490583  | 365489   | Yes                      |
| 18       | 490506  | 365323   | Yes                      |
| 19       | 490374  | 365189   | Yes                      |
| 20       | 490620  | 365225   | Yes                      |
| 21       | 490778  | 365150   | Yes                      |
| 22       | 488136  | 363471   | Yes                      |
| 23       | 488308  | 363571   | Yes                      |
| 24       | 488478  | 363674   | Yes                      |
| 25       | 488642  | 363606   | Yes                      |
| 26       | 488819  | 363658   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 27       | 488964  | 363785   | Yes                      |
| 28       | 489004  | 363934   | Yes                      |
| 29       | 488931  | 364055   | Yes                      |
| 30       | 488954  | 364244   | Yes                      |
| 31       | 489051  | 364388   | Yes                      |
| 32       | 489234  | 364437   | Yes                      |
| 33       | 489386  | 364436   | Yes                      |
| 34       | 489501  | 364325   | Yes                      |
| 35       | 489582  | 364146   | Yes                      |
| 36       | 489720  | 364078   | Yes                      |
| 37       | 489816  | 363956   | Yes                      |
| 38       | 489847  | 363758   | Yes                      |
| 39       | 489854  | 363104   | Yes                      |
| 40       | 489919  | 362921   | Yes                      |
| 41       | 489422  | 362383   | Yes                      |
| 42       | 489592  | 362378   | Yes                      |
| 43       | 489550  | 362474   | Yes                      |
| 44       | 489738  | 362490   | Yes                      |
| 45       | 491084  | 362668   | Yes                      |
| 46       | 491270  | 362603   | Yes                      |
| 47       | 491447  | 362677   | Yes                      |
| 48       | 491538  | 362338   | Yes                      |
| 49       | 491376  | 362468   | Yes                      |
| 50       | 491347  | 362615   | Yes                      |
| 51       | 491537  | 362667   | Yes                      |
| 52       | 491723  | 362714   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 53       | 492496  | 361894   | Yes                      |
| 54       | 492454  | 361708   | Yes                      |
| 55       | 492309  | 361684   | Yes                      |
| 56       | 492146  | 361653   | Yes                      |
| 57       | 492051  | 361495   | Yes                      |
| 58       | 491962  | 361330   | Yes                      |
| 59       | 491925  | 361139   | Yes                      |
| 60       | 491836  | 361009   | Yes                      |
| 61       | 491849  | 361343   | Yes                      |
| 62       | 491679  | 361441   | Yes                      |
| 63       | 491159  | 360779   | Yes                      |
| 64       | 491067  | 360661   | Yes                      |
| 65       | 489968  | 359912   | Yes                      |
| 66       | 489788  | 359988   | Yes                      |
| 67       | 489671  | 360081   | Yes                      |
| 68       | 489478  | 360121   | Yes                      |
| 69       | 489279  | 360162   | Yes                      |
| 70       | 490462  | 359869   | Yes                      |
| 71       | 490655  | 359827   | Yes                      |
| 72       | 490847  | 359771   | Yes                      |
| 73       | 491519  | 359959   | Yes                      |
| 74       | 491716  | 359932   | Yes                      |
| 75       | 491884  | 359963   | Yes                      |
| 76       | 492958  | 359760   | Yes                      |
| 77       | 492906  | 359569   | Yes                      |
| 78       | 490390  | 359003   | Yes                      |

| Receptor | Easting | Northing | Glint and Glare Possible |
|----------|---------|----------|--------------------------|
| 79       | 490534  | 358867   | Yes                      |
| 80       | 489938  | 365550   | No                       |
| 81       | 489768  | 358602   | No                       |
| 82       | 489699  | 358414   | No                       |

## Aviation Receptors

5.16. Aerodromes within 30km of the Principal Site can be found in **Table 5**.

**Table 5: Airfields within close proximity**

| Airfield                    | Distance (km) | Use               |
|-----------------------------|---------------|-------------------|
| Peacocks Farm               | 0.23          | Small grass strip |
| South Hykeham Airfield      | 1.79          | Small grass strip |
| South Scarle Airfield       | 2.76          | Small grass strip |
| Blackmoor Farm              | 3.47          | Small grass strip |
| RAF Waddington              | 5.93          | Military          |
| Thorney Airfield            | 7.33          | Small grass strip |
| Heath Farm                  | 7.49          | Small grass strip |
| Grassthorpe Grange Airfield | 8.43          | Small grass strip |
| Griffins Farm               | 8.95          | Small grass strip |
| Rectory Farm                | 12.51         | Small grass strip |
| Glebe Farm                  | 12.87         | Small grass strip |
| Darlton Airfield            | 14            | Small grass strip |
| RAF Scampton                | 14.46         | Military          |
| Knapthorne Lodge Airfield   | 14.78         | Small grass strip |
| The Cottage Farm            | 14.82         | Small grass strip |
| RAF Cranwell                | 14.91         | Military          |
| Stow Airfield               | 15.84         | Small grass strip |

| Airfield                | Distance (km) | Use                  |
|-------------------------|---------------|----------------------|
| Foston Airfield         | 16.59         | Small grass strip    |
| Headon Farm             | 17.2          | Small grass strip    |
| Forwood Farm            | 18.45         | Small grass strip    |
| RAF Barkston Heath      | 18.94         | Military             |
| RAF Syerston            | 19.08         | Military             |
| Ingham Airfield         | 19.13         | Small grass strip    |
| Grove Moor Farm         | 19.94         | Small grass strip    |
| Nanbeck Farm            | 20.01         | Small grass strip    |
| Old Manor Farm          | 20.91         | Small grass strip    |
| Retford/Gamston Airport | 21.34         | Licensed aerodrome   |
| Sturgate Airfield       | 22.49         | Small concrete strip |
| Bankwood Farm           | 23.65         | Small grass strip    |
| Wickenby Aerodrome      | 24.54         | Licensed aerodrome   |
| Hallyards Farm          | 25.59         | Small grass strip    |
| Jericho Farm            | 28.75         | Small grass strip    |
| RAF Conningsby          | 28.93         | Military             |
| Langar Airfield         | 29.43         | Small concrete strip |
| Grange Farm             | 29.71         | Small grass strip    |

5.17. As shown in **Table 5**, there are 35 aerodromes within 30km of the Principal Site. However, only RAF Waddington, Peacocks Farm, South Hykeham Airfield, South Scarle Airfield and Blackmoor Farm require a detailed assessment as the Principal Site is located within their safeguarding buffer zones, outlined in **paragraph 4.27 - 4.29**.

5.18. The other 30 aerodromes do not require detailed assessments due to their location in relation to the Principal Site falling outside of the buffer zones outlined in **paragraph 4.27 - 4.29**.

### RAF Waddington

5.19. RAF Waddington (ICAO code EGXW) is a military aerodrome. It is located approximately 4 nautical miles (NM) or 7.4km south of Lincoln.

5.20. The elevation of the aerodrome is 230ft (70m). It has one blacktop concrete ends runway, details of which are given in **Table 6**.

**Table 6: Runways at RAF Waddington**

| Runway Designation | True Bearing (°) | Length (m) | Width (m) |
|--------------------|------------------|------------|-----------|
| 02                 | 021.69           | 2399       | 58        |
| 20                 | 201.70           | 2399       | 58        |

5.21. The threshold location and height of the runway at RAF Waddington are given in **Table 7**.

**Table 7: Runway Threshold Locations and Heights**

| Runway Designation | Threshold Latitude | Threshold Longitude | Height AOD (m) |
|--------------------|--------------------|---------------------|----------------|
| 02                 | 53° 09' 15.66" N   | 000° 31' 54.02" W   | 69             |
| 20                 | 53° 10' 36.99" N   | 000° 31' 00.19" W   | 67             |

5.22. The ARP is located at the midpoint of Runway 02/20. The actual location of the ARP and the ATCT is given in **Table 8**. The height of the ATCT is estimated to be 10m based off images from Google Earth.

**Table 8: RAF Waddington Reference Point**

|      | Latitude         | Longitude         | Eastings | Northings |
|------|------------------|-------------------|----------|-----------|
| ARP  | 53° 09' 58.86" N | 000° 31' 25.45" W | 498790   | 364266    |
| ATCT | 53° 10' 19.80" N | 000° 31' 25.68" W | 498769   | 364911    |

### Peacocks Farm

5.23. Peacocks Farm is a private VFR aerodrome. It is located approximately 2 nautical miles (NM) or 3.8km southwest of North Hykeham.

5.24. The elevation of the aerodrome is 36ft (11m). It has one grass runway, details of which are given in Error! Reference source not found..

**Table 9: Runways at Peacocks Farm**

| Runway Designation | True Bearing (°) | Length (m) | Width (m) |
|--------------------|------------------|------------|-----------|
| 06                 | 061.00           | 440        | 18        |

|    |        |     |    |
|----|--------|-----|----|
| 24 | 241.00 | 440 | 18 |
|----|--------|-----|----|

5.25. The threshold location and height of the runway at Peacocks Farm are given in **Table 10**.

**Table 10: Runway Threshold Locations and Heights**

| Runway Designation | Threshold Latitude | Threshold Longitude | Height AOD (m) |
|--------------------|--------------------|---------------------|----------------|
| 06                 | 53° 08' 56.55" N   | 000° 37' 37.46" W   | 12             |
| 24                 | 53° 09' 03.45" N   | 000° 37' 16.16" W   | 9              |

5.26. There is no ARP or ATCT at Peacocks Farm.

### South Hykeham Airfield

5.27. South Hykeham Airfield is a VFR only aerodrome. It is located approximately 0.6 nautical miles (NM) or 1.2km southwest of North Hykeham.

5.28. The elevation of the aerodrome is approximately 23ft (7m). It has two grass strip runways, details of which are given in **Table 11**.

**Table 11: Runways at South Hykeham Airfield**

| Runway Designation | True Bearing (°) | Length (m) | Width (m) |
|--------------------|------------------|------------|-----------|
| 10                 | 104.00           | 540        | 15        |
| 28                 | 284.00           | 540        | 15        |
| 13                 | 125.00           | 600        | 21        |
| 31                 | 305.00           | 600        | 21        |

5.29. The threshold locations and heights of the runways at south Hykeham Airfield are given in **Table 1212**.

**Table 1212: South Hykeham Airfield Runway Threshold Locations and Heights**

| Runway Designation | Threshold Latitude | Threshold Longitude | Height AOD (m) |
|--------------------|--------------------|---------------------|----------------|
| 10                 | 53° 10' 22.51" N   | 000° 36' 29.15" W   | 9              |
| 28                 | 53° 10' 17.45" N   | 000° 36' 01.21" W   | 6              |
| 13                 | 53° 10' 28.05" N   | 000° 36' 31.55" W   | 8              |

|    |                  |                   |   |
|----|------------------|-------------------|---|
| 31 | 53° 10' 17.77" N | 000° 36' 06.70" W | 6 |
|----|------------------|-------------------|---|

5.30. There is no Aerodrome Reference Point (ARP) or ATCT at South Hykeham Airfield.

### South Scarle Airfield

5.31. South Scarle Airfield is a VFR only aerodrome. It is located approximately 1.2 nautical miles (NM) or 2.2km northeast of Collingham.

5.32. The elevation of the aerodrome is 39ft (12m). It has one grass strip runway, details of which are given in **Table 1313**.

**Table 1313: Runways at South Scarle Airfield**

| Runway Designation | True Bearing (°) | Length (m) | Width (m) |
|--------------------|------------------|------------|-----------|
| 10                 | 102              | 480        | 12        |
| 28                 | 282              | 480        | 12        |

5.33. The threshold locations and heights of the runways at South Scarle Airfield are given in **Table 1414**.

**Table 1414: South Scarle Airfield Runway Threshold Locations and Heights**

| Runway Designation | Threshold Latitude | Threshold Longitude | Height AOD (m) |
|--------------------|--------------------|---------------------|----------------|
| 10                 | 53° 09' 35.30" N   | 000° 43' 46.36" W   | 12             |
| 28                 | 53° 09' 32.28" N   | 000° 43 21.22" W    | 12             |

5.34. There is no ARP or ATCT at South Scarle Airfield.

### Blackmoor Farm

5.35. Blackmoor Farm is a private VFR only aerodrome. It is located approximately 1.3 nautical miles (NM) or 2.5km south of North Hykeham.

5.36. The elevation of the aerodrome is 20ft (6m). It has one grass strip runway, details of which are given in **Table 1515**.

**Table 1515: Runways at Blackmoor Farm**

| Runway Designation | True Bearing (°) | Length (m) | Width (m) |
|--------------------|------------------|------------|-----------|
|                    |                  |            |           |

|    |        |     |    |
|----|--------|-----|----|
| 06 | 57.00  | 340 | 10 |
| 24 | 237.00 | 340 | 10 |

5.37. The threshold locations and heights of the runways at Blackmoor Farm are given in **Table 1616**.

**Table 1616: Blackmoor Farm Runway Threshold Locations and Heights**

| Runway Designation | Threshold Latitude | Threshold Longitude | Height AOD (m) |
|--------------------|--------------------|---------------------|----------------|
| 06                 | 53° 09' 28.26" N   | 000° 35' 10.49" W   | 6              |
| 24                 | 53° 09' 34.45" N   | 000° 34' 55.23" W   | 6              |

5.38. There is no ARP or ATCT at Blackmoor Farm.

## 6. IMPACT ASSESSMENT

6.1. Following the methodology outlined earlier in this report, geometrical analysis comparing the azimuth and horizontal angle of the receptors from the Proposed Development and the solar reflection was conducted. Although this model did not take into account obstructions such as vegetation and buildings, discussion on the potentially impacted receptors is provided where necessary. Such obstructions have been taken into account during the visibility assessment and are discussed for each relevant receptor.

### GROUND BASED RECEPTORS

#### Residential Receptors

6.2. **Table 171717** identifies the receptors that will experience solar reflections based on solar reflection modelling and whether the reflections will be experienced in the morning (AM), evening (PM), or both. The number in brackets indicates which residential area the receptor belongs.

6.3. The 10 receptors which were within the no-reflection zones outlined previously have been excluded from the detailed modelling as they will never receive any glint and glare impacts from the Proposed Development.

6.4. **Appendix BA - DC** shows the analysis with the ground mounted solar panels at a tilt angle of between 5 and 45 degrees and with the tracker panels. **Appendix BA, BB, BC and BD** shows the analysis for Receptors 1 – 80, 81 – 160, 161 – 203 and 204 - 228 respectively with a tilt angle of 5 degrees, **Appendix CA, CB, CC and CD** shows the analysis for Receptors 1 – 80, 81 – 160, 161 – 203 and 204 - 228 respectively with a tilt angle of 45 degrees and **Appendix DA, DB, DC and DD** shows the analysis for Receptors 1 – 80, 81 – 160, 161 – 203 and 204 - 228 respectively with tracker panels.

6.5. **Table 171717** shows the worst-case impact at each receptor, based on a theoretical modelled impact without consideration of local vegetation or other obstacles and assuming no cloud at any point in the year and shows which panel configuration (minimum or maximum angle for fixed south facing or single axis tracker (see paragraphs 4.17 to 4.19)) produces the highest impact upon the receptor.

**Table 1717: Potential for Glint and Glare Impact on Residential Receptors**

| Receptor | Glint Possible from Site |     | Potential Glare Impact (per year) |       | Magnitude of Impact | Worst Case Tilt Angle (Degrees) |
|----------|--------------------------|-----|-----------------------------------|-------|---------------------|---------------------------------|
|          | AM                       | PM  | Minutes                           | Hours |                     |                                 |
| 1        | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 2        | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 3        | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 4 (1)    | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 5 (1)    | Yes                      | No  | 282                               | 4.70  | Low                 | 45                              |
| 6        | Yes                      | No  | 962                               | 16.03 | Low                 | 45                              |
| 7        | Yes                      | No  | 69                                | 1.15  | Low                 | Tracker                         |
| 8        | Yes                      | No  | 905                               | 15.08 | Low                 | 45                              |
| 9        | Yes                      | No  | 831                               | 13.85 | Low                 | 45                              |
| 10       | Yes                      | No  | 1033                              | 17.22 | Low                 | 45                              |
| 11       | Yes                      | No  | 1057                              | 17.62 | Low                 | 45                              |
| 12       | No                       | No  | 1320                              | 22.00 | Medium              | 45                              |
| 13 (2)   | Yes                      | No  | 581                               | 9.68  | Low                 | 45                              |
| 14 (2)   | Yes                      | No  | 1282                              | 21.37 | Medium              | 45                              |
| 15 (2)   | Yes                      | No  | 3091                              | 51.52 | High                | 5                               |
| 16 (2)   | Yes                      | No  | 3535                              | 58.92 | High                | 5                               |
| 17 (2)   | Yes                      | No  | 3354                              | 55.90 | High                | 5                               |
| 18 (2)   | Yes                      | No  | 2054                              | 34.23 | High                | 5                               |
| 19 (2)   | Yes                      | No  | 1888                              | 31.47 | High                | 5                               |
| 20       | Yes                      | No  | 1131                              | 18.85 | Low                 | 5                               |
| 21       | Yes                      | No  | 1351                              | 22.52 | Medium              | 5                               |
| 22       | Yes                      | No  | 1367                              | 22.78 | Medium              | 5                               |
| 23 (3)   | Yes                      | No  | 3442                              | 57.37 | High                | 5                               |
| 24 (3)   | Yes                      | Yes | 2345                              | 39.08 | High                | 5                               |
| 25       | Yes                      | No  | 201                               | 3.35  | Low                 | 45                              |

| Receptor | Glint Possible from Site |     | Potential Glare Impact (per year) |        | Magnitude of Impact | Worst Case Tilt Angle (Degrees) |
|----------|--------------------------|-----|-----------------------------------|--------|---------------------|---------------------------------|
|          | AM                       | PM  | Minutes                           | Hours  |                     |                                 |
| 26       | Yes                      | No  | 739                               | 12.32  | Low                 | 45                              |
| 27       | Yes                      | No  | 1041                              | 17.35  | Low                 | 45                              |
| 28       | Yes                      | No  | 1231                              | 20.52  | Medium              | 45                              |
| 29       | Yes                      | Yes | 6390                              | 106.50 | High                | 45                              |
| 30       | No                       | No  | 1319                              | 21.98  | Medium              | 5                               |
| 31       | No                       | No  | 1209                              | 20.15  | Medium              | 5                               |
| 32       | No                       | No  | 980                               | 16.33  | Low                 | 5                               |
| 33       | No                       | No  | 1364                              | 22.73  | Medium              | 5                               |
| 34       | No                       | No  | 908                               | 15.13  | Low                 | 5                               |
| 35       | No                       | No  | 0                                 | 0.00   | None                | N/A                             |
| 36       | No                       | No  | 0                                 | 0.00   | None                | N/A                             |
| 37       | No                       | No  | 0                                 | 0.00   | None                | N/A                             |
| 38 (4)   | Yes                      | Yes | 6988                              | 116.47 | High                | 45                              |
| 39 (4)   | Yes                      | Yes | 7100                              | 118.33 | High                | 45                              |
| 40 (4)   | Yes                      | Yes | 4028                              | 67.13  | High                | 45                              |
| 41 (4)   | Yes                      | Yes | 5141                              | 85.68  | High                | 45                              |
| 42       | No                       | No  | 0                                 | 0.00   | None                | N/A                             |
| 43 (5)   | No                       | Yes | 183                               | 3.05   | Low                 | Tracker                         |
| 44 (5)   | No                       | No  | 121                               | 2.02   | Low                 | Tracker                         |
| 45 (5)   | No                       | No  | 133                               | 2.22   | Low                 | Tracker                         |
| 46       | No                       | Yes | 173                               | 2.88   | Low                 | Tracker                         |
| 47       | No                       | Yes | 213                               | 3.55   | Low                 | Tracker                         |
| 48       | Yes                      | No  | 0                                 | 0.00   | None                | N/A                             |
| 49       | Yes                      | Yes | 63                                | 1.05   | Low                 | Tracker                         |
| 50 (6)   | Yes                      | Yes | 177                               | 2.95   | Low                 | Tracker                         |

| Receptor | Glint Possible from Site |     | Potential Glare Impact (per year) |       | Magnitude of Impact | Worst Case Tilt Angle (Degrees) |
|----------|--------------------------|-----|-----------------------------------|-------|---------------------|---------------------------------|
|          | AM                       | PM  | Minutes                           | Hours |                     |                                 |
| 51 (6)   | Yes                      | Yes | 458                               | 7.63  | Low                 | Tracker                         |
| 52 (7)   | No                       | Yes | 138                               | 2.30  | Low                 | Tracker                         |
| 53 (7)   | No                       | No  | 4                                 | 0.00  | Low                 | Tracker                         |
| 54 (7)   | Yes                      | Yes | 882                               | 14.70 | Low                 | Tracker                         |
| 55 (7)   | Yes                      | Yes | 1245                              | 20.75 | Medium              | Tracker                         |
| 56 (7)   | No                       | Yes | 153                               | 2.55  | Low                 | Tracker                         |
| 57 (7)   | Yes                      | Yes | 645                               | 10.75 | Low                 | Tracker                         |
| 58 (7)   | Yes                      | Yes | 1069                              | 17.82 | Low                 | Tracker                         |
| 59 (7)   | Yes                      | Yes | 1575                              | 26.25 | Medium              | Tracker                         |
| 60 (7)   | Yes                      | Yes | 1878                              | 31.30 | High                | Tracker                         |
| 61 (7)   | Yes                      | Yes | 1306                              | 21.77 | Medium              | Tracker                         |
| 62 (7)   | Yes                      | Yes | 2417                              | 40.28 | High                | Tracker                         |
| 63 (7)   | Yes                      | Yes | 1850                              | 30.83 | High                | Tracker                         |
| 64 (7)   | Yes                      | Yes | 2436                              | 40.60 | High                | Tracker                         |
| 65 (7)   | Yes                      | Yes | 1771                              | 29.52 | Medium              | Tracker                         |
| 66 (7)   | No                       | Yes | 822                               | 13.70 | Low                 | Tracker                         |
| 67 (7)   | No                       | Yes | 141                               | 2.35  | Low                 | Tracker                         |
| 68 (8)   | No                       | No  | 326                               | 5.00  | Low                 | Tracker                         |
| 69 (8)   | No                       | Yes | 336                               | 5.60  | Low                 | Tracker                         |
| 70 (8)   | No                       | Yes | 377                               | 6.28  | Low                 | Tracker                         |
| 71       | No                       | Yes | 1106                              | 18.43 | Low                 | 45                              |
| 72       | No                       | Yes | 2543                              | 42.38 | High                | 5                               |
| 73 (9)   | No                       | Yes | 2043                              | 34.05 | High                | 5                               |
| 74 (9)   | No                       | Yes | 1979                              | 32.98 | High                | 45                              |
| 75       | No                       | Yes | 2116                              | 35.27 | High                | 45                              |

| Receptor | Glint Possible from Site |     | Potential Glare Impact (per year) |       | Magnitude of Impact | Worst Case Tilt Angle (Degrees) |
|----------|--------------------------|-----|-----------------------------------|-------|---------------------|---------------------------------|
|          | AM                       | PM  | Minutes                           | Hours |                     |                                 |
| 76       | No                       | Yes | 2138                              | 35.63 | High                | 45                              |
| 77       | No                       | Yes | 2607                              | 43.45 | High                | 45                              |
| 78       | No                       | Yes | 882                               | 14.70 | Low                 | 45                              |
| 79       | No                       | Yes | 133                               | 2.22  | Low                 | 45                              |
| 80       | No                       | Yes | 57                                | 0.95  | Low                 | 45                              |
| 81       | Yes                      | Yes | 2078                              | 34.63 | High                | 45                              |
| 82       | No                       | Yes | 3411                              | 56.85 | High                | 5                               |
| 83       | Yes                      | No  | 3370                              | 56.17 | High                | 5                               |
| 84       | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 85       | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 86       | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 87 (10)  | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 88 (10)  | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 89 (10)  | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 90 (10)  | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 91 (10)  | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 92 (10)  | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 93 (10)  | Yes                      | No  | 9                                 | 0.15  | Low                 | 5                               |
| 94 (10)  | Yes                      | No  | 71                                | 1.18  | Low                 | 5                               |
| 95 (10)  | Yes                      | No  | 1159                              | 19.32 | Low                 | 45                              |
| 96 (10)  | Yes                      | No  | 2102                              | 35.03 | High                | 45                              |
| 97 (10)  | Yes                      | No  | 1833                              | 30.55 | High                | 45                              |
| 98 (10)  | Yes                      | No  | 1179                              | 19.65 | Low                 | 45                              |
| 99 (10)  | Yes                      | No  | 215                               | 3.58  | Low                 | 5                               |
| 100 (10) | Yes                      | No  | 2560                              | 42.67 | High                | 5                               |

| Receptor | Glint Possible from Site |     | Potential Glare Impact (per year) |        | Magnitude of Impact | Worst Case Tilt Angle (Degrees) |
|----------|--------------------------|-----|-----------------------------------|--------|---------------------|---------------------------------|
|          | AM                       | PM  | Minutes                           | Hours  |                     |                                 |
| 101 (10) | Yes                      | No  | 4352                              | 72.53  | High                | 5                               |
| 102 (10) | Yes                      | No  | 6032                              | 100.53 | High                | 5                               |
| 103 (10) | Yes                      | No  | 2325                              | 38.75  | High                | 5                               |
| 104 (10) | Yes                      | No  | 233                               | 3.88   | Low                 | 45                              |
| 105 (10) | No                       | No  | 0                                 | 0.00   | None                | N/A                             |
| 106 (10) | Yes                      | No  | 5                                 | 0.08   | Low                 | 45                              |
| 107 (10) | Yes                      | No  | 30                                | 0.50   | Low                 | 45                              |
| 108 (10) | Yes                      | No  | 1045                              | 17.42  | Low                 | 5                               |
| 109 (10) | No                       | No  | 0                                 | 0.00   | None                | N/A                             |
| 110 (10) | Yes                      | No  | 947                               | 15.78  | Low                 | 5                               |
| 111 (10) | No                       | No  | 674                               | 11.23  | Low                 | 5                               |
| 112 (10) | No                       | No  | 387                               | 6.45   | Low                 | 5                               |
| 113 (10) | No                       | No  | 38                                | 0.63   | Low                 | 5                               |
| 114 (10) | No                       | No  | 0                                 | 0.00   | None                | N/A                             |
| 115 (10) | No                       | Yes | 0                                 | 0.00   | None                | N/A                             |
| 116 (10) | No                       | No  | 0                                 | 0.00   | None                | N/A                             |
| 117 (11) | No                       | No  | 379                               | 6.32   | Low                 | 45                              |
| 118 (11) | No                       | No  | 6                                 | 0.00   | Low                 | 45                              |
| 119 (11) | No                       | Yes | 93                                | 1.55   | Low                 | 45                              |
| 120 (11) | No                       | No  | 0                                 | 0.00   | None                | N/A                             |
| 121      | No                       | No  | 24                                | 0.00   | Low                 | Tracker                         |
| 122      | No                       | Yes | 4163                              | 69.38  | High                | 5                               |
| 123 (12) | No                       | No  | 387                               | 6.45   | Low                 | Tracker                         |
| 124 (12) | No                       | No  | 108                               | 1.80   | Low                 | Tracker                         |
| 125      | No                       | No  | 1                                 | 0.02   | Low                 | Tracker                         |

| Receptor | Glint Possible from Site |     | Potential Glare Impact (per year) |       | Magnitude of Impact | Worst Case Tilt Angle (Degrees) |
|----------|--------------------------|-----|-----------------------------------|-------|---------------------|---------------------------------|
|          | AM                       | PM  | Minutes                           | Hours |                     |                                 |
| 126 (13) | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 127 (13) | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 128 (13) | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 129 (13) | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 130 (13) | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 131 (13) | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 132      | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 133      | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 134 (14) | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 135 (14) | No                       | No  | 7                                 | 0.12  | Low                 | 5                               |
| 136 (15) | No                       | No  | 2056                              | 34.26 | High                | 5                               |
| 137 (15) | Yes                      | Yes | 1929                              | 32.15 | High                | 5                               |
| 138 (15) | Yes                      | No  | 1351                              | 22.52 | Medium              | 5                               |
| 139 (16) | Yes                      | No  | 415                               | 6.92  | Low                 | 45                              |
| 140 (16) | Yes                      | No  | 615                               | 10.25 | Low                 | 45                              |
| 141 (16) | Yes                      | No  | 576                               | 9.60  | Low                 | 45                              |
| 142 (16) | Yes                      | No  | 835                               | 13.92 | Low                 | 45                              |
| 143 (17) | Yes                      | No  | 307                               | 5.12  | Low                 | 45                              |
| 144 (17) | Yes                      | No  | 106                               | 1.77  | Low                 | 45                              |
| 145      | Yes                      | No  | 852                               | 14.20 | Low                 | 45                              |
| 146      | No                       | Yes | 17                                | 0.28  | Low                 | 5                               |
| 147      | No                       | Yes | 853                               | 14.22 | Low                 | 5                               |
| 148      | No                       | Yes | 3006                              | 50.10 | High                | 5                               |
| 149      | Yes                      | No  | 276                               | 4.60  | Low                 | 45                              |
| 150      | Yes                      | No  | 299                               | 4.98  | Low                 | 45                              |

| Receptor | Glint Possible from Site |     | Potential Glare Impact (per year) |       | Magnitude of Impact | Worst Case Tilt Angle (Degrees) |
|----------|--------------------------|-----|-----------------------------------|-------|---------------------|---------------------------------|
|          | AM                       | PM  | Minutes                           | Hours |                     |                                 |
| 151      | Yes                      | No  | 803                               | 13.38 | Low                 | 5                               |
| 152 (18) | Yes                      | No  | 1003                              | 16.72 | Low                 | 5                               |
| 153 (18) | Yes                      | Yes | 673                               | 11.22 | Low                 | 45                              |
| 154 (18) | Yes                      | Yes | 764                               | 12.73 | Low                 | 5                               |
| 155      | Yes                      | No  | 1529                              | 25.48 | Medium              | 5                               |
| 156      | Yes                      | Yes | 1194                              | 19.90 | Low                 | 5                               |
| 157      | Yes                      | No  | 4650                              | 77.50 | High                | 45                              |
| 158      | Yes                      | No  | 3577                              | 59.62 | High                | 45                              |
| 159      | Yes                      | No  | 313                               | 5.22  | Low                 | 45                              |
| 160      | Yes                      | No  | 251                               | 4.18  | Low                 | 45                              |
| 161      | Yes                      | Yes | 32                                | 0.53  | Low                 | 45                              |
| 162      | Yes                      | No  | 3372                              | 56.20 | High                | 5                               |
| 163      | Yes                      | No  | 3504                              | 58.40 | High                | 5                               |
| 164      | Yes                      | Yes | 2460                              | 41.00 | High                | 5                               |
| 165      | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 166      | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 167      | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 168      | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 169 (19) | Yes                      | Yes | 493                               | 8.22  | Low                 | 5                               |
| 170 (19) | No                       | No  | 49                                | 0.82  | Low                 | 5                               |
| 171 (19) | No                       | Yes | 104                               | 1.73  | Low                 | 5                               |
| 172 (19) | No                       | Yes | 441                               | 7.35  | Low                 | 5                               |
| 173 (19) | No                       | Yes | 86                                | 1.43  | Low                 | 5                               |
| 174 (19) | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 175 (19) | No                       | No  | 0                                 | 0.00  | None                | N/A                             |

| Receptor | Glint Possible from Site |     | Potential Glare Impact (per year) |       | Magnitude of Impact | Worst Case Tilt Angle (Degrees) |
|----------|--------------------------|-----|-----------------------------------|-------|---------------------|---------------------------------|
|          | AM                       | PM  | Minutes                           | Hours |                     |                                 |
| 176 (19) | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 177 (19) | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 178 (19) | No                       | Yes | 5                                 | 0.08  | Low                 | 45                              |
| 179 (19) | No                       | Yes | 29                                | 0.48  | Low                 | 45                              |
| 180 (19) | No                       | Yes | 389                               | 6.48  | Low                 | 5                               |
| 181 (19) | No                       | Yes | 162                               | 2.70  | Low                 | 45                              |
| 182 (19) | No                       | Yes | 549                               | 9.15  | Low                 | 45                              |
| 183 (19) | No                       | Yes | 1165                              | 19.42 | Low                 | 5                               |
| 184 (19) | No                       | No  | 489                               | 8.15  | Low                 | 45                              |
| 185 (19) | Yes                      | Yes | 339                               | 5.65  | Low                 | 45                              |
| 186 (19) | Yes                      | Yes | 354                               | 5.90  | Low                 | 5                               |
| 187 (19) | Yes                      | Yes | 167                               | 2.78  | Low                 | 5                               |
| 188 (19) | No                       | Yes | 1199                              | 19.98 | Low                 | 5                               |
| 189 (19) | No                       | Yes | 1007                              | 16.78 | Low                 | 45                              |
| 190 (19) | No                       | Yes | 804                               | 13.40 | Low                 | 45                              |
| 191 (19) | Yes                      | No  | 435                               | 7.25  | Low                 | 45                              |
| 192 (19) | Yes                      | No  | 34                                | 0.57  | Low                 | 45                              |
| 193      | Yes                      | No  | 209                               | 3.48  | Low                 | 45                              |
| 194 (20) | No                       | No  | 232                               | 3.87  | Low                 | 5                               |
| 195 (20) | No                       | No  | 387                               | 6.45  | Low                 | 5                               |
| 196 (21) | No                       | No  | 1397                              | 23.28 | Medium              | 5                               |
| 197 (21) | No                       | No  | 1242                              | 20.70 | Medium              | 5                               |
| 198 (21) | No                       | No  | 1353                              | 22.55 | Medium              | 5                               |
| 199 (21) | Yes                      | No  | 1111                              | 18.52 | Low                 | 5                               |
| 200 (21) | No                       | No  | 0                                 | 0.00  | None                | N/A                             |

| Receptor | Glint Possible from Site |     | Potential Glare Impact (per year) |       | Magnitude of Impact | Worst Case Tilt Angle (Degrees) |
|----------|--------------------------|-----|-----------------------------------|-------|---------------------|---------------------------------|
|          | AM                       | PM  | Minutes                           | Hours |                     |                                 |
| 201 (21) | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 202 (21) | Yes                      | Yes | 1205                              | 20.08 | Medium              | 5                               |
| 203 (21) | No                       | No  | 565                               | 9.42  | Low                 | 5                               |
| 204 (22) | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 205 (22) | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 206 (22) | No                       | Yes | 104                               | 1.73  | Low                 | 5                               |
| 207 (22) | Yes                      | Yes | 3013                              | 50.22 | High                | 45                              |
| 208 (22) | Yes                      | Yes | 2821                              | 47.02 | High                | 45                              |
| 209 (22) | Yes                      | Yes | 3650                              | 60.83 | High                | 45                              |
| 210 (22) | Yes                      | Yes | 3375                              | 56.25 | High                | 45                              |
| 211 (22) | Yes                      | Yes | 655                               | 10.92 | Low                 | 45                              |
| 212 (22) | Yes                      | Yes | 2996                              | 49.93 | High                | 5                               |
| 213 (22) | Yes                      | Yes | 4068                              | 67.80 | High                | 5                               |
| 214 (22) | Yes                      | Yes | 2966                              | 49.43 | High                | 5                               |
| 215 (22) | Yes                      | Yes | 1659                              | 27.65 | Medium              | 45                              |
| 216 (22) | Yes                      | No  | 549                               | 9.15  | Low                 | 5                               |
| 217 (22) | Yes                      | Yes | 3582                              | 59.70 | High                | 5                               |
| 218 (22) | Yes                      | Yes | 870                               | 14.50 | Low                 | 45                              |
| 219 (22) | Yes                      | No  | 1092                              | 18.20 | Low                 | 45                              |
| 220 (22) | Yes                      | No  | 1059                              | 17.65 | Low                 | 45                              |
| 221 (22) | Yes                      | No  | 272                               | 4.53  | Low                 | 45                              |
| 222 (22) | Yes                      | No  | 88                                | 1.47  | Low                 | 5                               |
| 223 (22) | No                       | No  | 100                               | 1.67  | Low                 | 5                               |
| 224 (22) | No                       | No  | 0                                 | 0.00  | None                | N/A                             |
| 225 (22) | No                       | No  | 0                                 | 0.00  | None                | N/A                             |

| Receptor | Glint Possible from Site |    | Potential Glare Impact (per year) |       | Magnitude of Impact | Worst Case Tilt Angle (Degrees) |
|----------|--------------------------|----|-----------------------------------|-------|---------------------|---------------------------------|
|          | AM                       | PM | Minutes                           | Hours |                     |                                 |
| 226 (22) | No                       | No | 0                                 | 0.00  | None                | N/A                             |
| 227 (22) | No                       | No | 0                                 | 0.00  | None                | N/A                             |
| 228 (22) | No                       | No | 0                                 | 0.00  | None                | N/A                             |

6.6. As can be seen in **Table 1717**, there is a **High** impact at 48 receptors, including seven residential areas, **Medium** impact at 19 receptors, including two residential areas, **Low** impact at 111 receptors, including 11 residential areas and a **None** impact at 50 receptors, including one residential areas. **Appendix BA - DD** shows detailed analysis of when the glare impacts are possible, whilst also showing which parts of the solar farm the solar glare is reflected from.

6.7. **Appendix Q** shows Google Earth images that give an insight into how each receptor will be impacted by the glint and glare from the Principal Site. There is a mixture of images used, which include aerial, ground level and street level. The aerial images show the location of the receptor with the solar farm drawn as a white polygon and can be seen on the images when the solar farm is theoretically visible. The area of the solar farm from where reflections may be possible has been drawn as a yellow polygon. The ground level terrain is based on the height data of the surrounding land showing no intervening vegetation or buildings. The white and yellow polygons can be seen in this view also. The street view gives a good indication as to whether the area of the solar farm where reflections are theoretically possible will be visible from the receptor point.

#### Receptors 5 and 6 (Group A Receptors 5 and 6)

6.8. The 'Glare Reflections on PV Footprint' chart in **Appendix CA** shows that reflections from the northern half of Panel Area 2 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.

6.9. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site. This image shows dense vegetation between the Principal Site and the receptors. The second image is a ground level image taken from the position of Receptor 6 with an eastwards view towards Panel Area 2 in the Principal Site. This image confirms that the topography is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 7 (Group A Receptor 7)

- 6.10. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix DA** shows that reflections from a central section of Panel Area 2 and a central section of Panel Area 4 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.11. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows vegetation between the Principal Site and the receptor. The second image is a street view image with a northwards view towards the receptor. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptors 8 - 12 (Group A Receptor 8 - 12)

- 6.12. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BA and CA** shows that reflections from a central section of Panel Area 1 and a northeast section of Panel Area 4 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.
- 6.13. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows dense vegetation between the Principal Site and the receptor. The second image is a street view image with a view of the vegetation to the east of the receptors. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 13 (Group A Receptor 13)

- 6.14. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix CA** shows that reflections from a small northern section of Panel Area 1 and a central section of Panel Area 2 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.15. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows dense vegetation between the Principal Site and the receptor. The second image is a street view image with an eastwards view towards Panel Areas 1 and 2 in the Principal Site. This image confirms that the vegetation is sufficient to screen all views of Panel Area 2 and filter views of Panel Area 1 in the Principal Site where glint and glare is possible. Therefore, the impact remains **Low**.

### Receptor 14 (Group A Receptor 14)

- 6.16. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BA and CA** shows that reflections from a small northern section of Panel Area 1, a southern section of Panel Area 2 and a northern

section of Panel Area 4 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

- 6.17. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows dense vegetation between the Principal Site and the receptor. The second image is a street view image with an eastwards view towards Panel Areas 1 and 2 in the Principal Site. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### **Receptors 15 - 17 (Group A Receptors 15 - 17)**

- 6.18. The 'Glare Reflections on PV Footprint' chart in **Appendix BA, CA and DA** shows that reflections from a small central section of Panel Area 1, a central section of Panel Area 2 and a northern section of Panel Area 4 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.
- 6.19. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site. This image shows dense vegetation between the Principal Site and the receptors. The second and third images are ground level images taken from the position of Receptor 16 with an eastwards view towards Panel Areas 1, 2 and 4 in the Principal Site showing the position of the sun at 06:45 UTC on March 10<sup>th</sup> and at 07:15 UTC on June 1<sup>st</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptors and that the topography is sufficient to screen all views of Panel Area 2 in the Principal Site where glint and glare is possible. Therefore, the impact reduces to **Low**.

#### **Receptors 18 and 19 (Group A Receptors 18 and 19)**

- 6.20. The 'Glare Reflections on PV Footprint' chart in **Appendix BA, CA and DA** shows that reflections from a central section of Panel Area 1, a northern section of Panel Area 3 and a northern section of Panel Area 4 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.
- 6.21. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site. This image shows dense vegetation between the Principal Site and the receptors. The second and third images are ground level images taken from the position of Receptor 18 with an eastwards view towards Panel Areas 1, 3 and 4 in the Principal Site showing the position of the sun at 06:45 UTC on April 10<sup>th</sup> and at 07:00 UTC on May 15<sup>th</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the

sun will be the main source of solar reflection at the receptors. Therefore, the impact reduces to **Low**.

### Receptor 20 (Group A Receptor 20)

- 6.22. The 'Glint Reflections on PV Footprint' chart in **Appendix BA and BC** shows that reflections from a central section of Panel Area 1, a northern section of Panel Area 3 and a central section of Panel Area 4 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.23. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows dense vegetation between the Principal Site and the receptor. The second image is a street view image with a view towards the receptor. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptors 21 - 27 (Group A Receptors 21 - 27)

- 6.24. The 'Glint Reflections on PV Footprint' chart in **Appendix BA, CA and DA** shows that reflections from a southeastern and a western section of Panel Area 1 and a southern section of Panel Area 2, a northern section of Panel Area 3 and a central section of Panel Area 4 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.
- 6.25. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site. This image shows vegetation between the Principal Site and the receptors. The second and third images are ground level images taken from the position of Receptor 24 with an eastwards view towards Panel Areas 1, 2, 3 and 4 in the Principal Site showing the position of the sun at 06:45 UTC on March 25<sup>th</sup> and at 07:15 UTC on June 1<sup>st</sup> respectively. The fourth and fifth images are ground level images taken from the position of Receptor 24 with an eastwards view towards Panel Area 1 in the Principal Site showing the position of the sun at 17:15 UTC on April 15<sup>th</sup> and at 19:00 UTC on July 1<sup>st</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptors and that the topography is sufficient to screen all views of Panel Area 2 in the Principal Site where glint and glare is possible. Therefore, the impact reduces to **Low**.

### Receptor 28 (Group A Receptor 28)

- 6.26. The 'Glint Reflections on PV Footprint' chart in **Appendix BA and CA** shows that reflections from a northern section of Panel Area 1 and a southwest section of Panel Area 2 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.27. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. This image shows vegetation between the Principal Site and the receptor. The second, third and fourth images are ground level images taken from the position of the receptor with an eastwards view towards Panel Area 2 in the Principal Site showing the position of the sun at 06:30 UTC on March 15<sup>th</sup>, at 06:45 UTC on April 15<sup>th</sup> and at 04:45 UTC on June 15<sup>th</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. The fifth image is a ground level image taken from the position of the receptor with a westwards view towards Panel Area 1 in the Principal Site. This image confirms that the topography is sufficient to screen all views of Panel Area 1 in the Principal Site were glint and glare is possible. Therefore, the impact reduces to **Low**.

### Receptor 29 (Group A Receptor 29)

6.28. The 'Glint Reflections on PV Footprint' chart in **Appendix BA and CA** shows that reflections from a central section of Panel Area 1, a northern section of Panel Area 3 and a western section of Panel Area 4 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.29. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. This image shows vegetation between the Principal Site and the receptor. The second and third images are ground level images taken from the position of the receptor with an eastwards view towards Panel Area 4 in the Principal Site showing the position of the sun at 06:30 UTC on April 1<sup>st</sup> and at 06:45 UTC on July 1<sup>st</sup> respectively. The fourth and fifth images are ground level images taken from the position of the receptor with a westwards view towards Panel Areas 1 and 3 in the Principal Site showing the position of the sun at 17:45 UTC on April 1<sup>st</sup> and at 17:00 UTC on May 15<sup>th</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptors. Therefore, the impact reduces to **Low**.

### Receptors 30 - 34 (Group A Receptors 30 - 34)

6.30. The 'Glint Reflections on PV Footprint' chart in **Appendix BA and BC** shows that reflections from a central section of Panel Area 3 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.

6.31. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows dense vegetation between the Principal Site and the receptors. The second image is a street view image with a view towards the Principal Site. This image confirms

that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 37 (Group A Receptor 37)

- 6.32. The 'Glint Reflections on PV Footprint' chart in **Appendix BA** shows that reflections from a southern section of Panel Area 3 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.33. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows vegetation between the Principal Site and the receptor. The second image is a street view image with a view towards the Principal Site. This image confirms that the vegetation is sufficient to filter all views of the Principal Site where glint and glare is possible. Therefore, the impact remains **Low**.

### Receptor 38 (Group A Receptor 38)

- 6.34. The 'Glint Reflections on PV Footprint' chart in **Appendix BA and CA** shows that reflections from a northern section of Panel Area 1 and a western, a northwest section and an eastern section of Panel Area 4 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.35. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. This image shows vegetation between the Principal Site and the receptor. The second and third images are ground level images taken from the position of the receptor with an eastwards view towards Panel Area 4 in the Principal Site showing the position of the sun at 06:30 UTC on April 1<sup>st</sup> and at 07:00 UTC on July 15<sup>th</sup> respectively. The fourth and fifth images are ground level images taken from the position of the receptor with a westwards view towards Panel Area 1 in the Principal Site showing the position of the sun at 17:45 UTC on April 1<sup>st</sup> and at 17:00 UTC on July 1<sup>st</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptors. Therefore, the impact remains **Low**.

### Receptors 39 and 40 (Group A Receptors 39 and 40)

- 6.36. The 'Glint Reflections on PV Footprint' chart in **Appendix BA and CA** shows that reflections from a central section of Panel Area 1, a northern section of Panel Area 3 and a western section and an eastern section of Panel Area 4 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.37. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. This image shows vegetation between the Principal Site

and the receptor. The second and third images are ground level images taken from the position of receptor 39 with an eastwards view towards Panel Area 4 in the Principal Site showing the position of the sun at 06:30 UTC on April 1<sup>st</sup> and at 07:15 UTC on July 1<sup>st</sup> respectively. The fourth and fifth images are ground level images taken from the position of receptor 39 with a westwards view towards Panel Areas 1, 3 and 4 in the Principal Site showing the position of the sun at 18:00 UTC on June 1<sup>st</sup> and at 17:00 UTC on May 1<sup>st</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptors. Therefore, the impact reduces to **Low**.

#### Receptor 41 (Group A Receptor 41)

- 6.38. The 'Glint Reflections on PV Footprint' chart in **Appendix BA and CA** shows that reflections from a central section of Panel Area 1, a northern section of Panel Area 3, a western section of Panel Area 4 and a northern section of Panel Area 6 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.39. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken. This image shows vegetation between the Principal Site and the receptor. The second image is a street view image with a view towards Panel Area 6 in the Proposed Development. This image confirms that the vegetation is sufficient to screen all views of Panel Area 6 in the Proposed Development where glint and glare is possible. The third and fourth images are ground level images taken from the position of the receptor with a westwards view towards Panel Areas 1, 3 and 4 in the Principal Site showing the position of the sun at 17:45 UTC on April 1<sup>st</sup> and at 17:00 UTC on May 1<sup>st</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptors. Therefore, the impact reduces to **Low**.

#### Receptors 42 and 43 (Group A Receptors 42 and 43)

- 6.40. The 'Glint Reflections on PV Footprint' chart in **Appendix DA** shows that reflections from a central section of Panel Area 4 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.
- 6.41. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows dense vegetation between the Principal Site and the receptor. The second image is a street view image with an eastwards view of the vegetation south of the receptors. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptors 44 - 47 (Group A Receptors 44 - 47)

- 6.42. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix DA** shows that reflections from all, except a southern section of Panel Area 4 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.
- 6.43. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows dense vegetation between the Principal Site and the receptors. The second image is a street view image with a view of the vegetation to the south of the receptors. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptors 48 - 51 (Group A Receptors 48 - 51)

- 6.44. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix DA** shows that reflections from the western half of Panel Area 4 and the southern half of Panel Area 6 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.
- 6.45. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows dense vegetation between the Principal Site and the receptors. The second image is a street view image with a view towards Panel Areas 4 and 6 in the Principal Site. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 52 (Group A Receptor 52)

- 6.46. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix DA** shows that reflections from a central section of Panel Area 2 and an eastern section of Panel Area 4 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.47. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. This image shows vegetation between the Principal Site and the receptors. The second and third images are a ground level image taken from the position of the receptor with a westwards view towards Panel Area 2 in the Principal Site and the fourth and fifth images are ground level images taken from the position of the receptor with a southwards view towards Panel Area 4 in the Principal Site showing the position of the sun at 15:30 UTC on January 1<sup>st</sup>, 17:00 UTC on March 1<sup>st</sup> and at 12:00 UTC on January 1<sup>st</sup> and December 1<sup>st</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptors. Therefore, the impact reduces to **Low**.

### Receptor 53 (Group A Receptor 53)

- 6.48. The 'Glint Reflections on PV Footprint' chart in **Appendix DA** shows that reflections from a central section of Panel Area 2 and an eastern section of Panel Area 4 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.
- 6.49. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows dense vegetation between the Principal Site and the receptors. The second image is a street view image with a view of the vegetation to the south of the receptor. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptors 54 - 58 (Group A Receptors 54 – 58)

- 6.50. The 'Glint Reflections on PV Footprint' chart in **Appendix DA** shows that reflections from all, except a southern and an eastern section, of Panel Area 4 and all, except a western section, of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.
- 6.51. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows vegetation and intervening buildings between the Principal Site and the receptors. The second image is a street view image with a view towards the receptors. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptors 59 - 62 (Group A Receptors 59 – 62)

- 6.52. The 'Glint Reflections on PV Footprint' chart in **Appendix BA, CA and DA** shows that reflections from a northern section of Panel Area 2, the northern half of Panel Area 4 and all, except a western section, of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.
- 6.53. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows vegetation and intervening buildings between the Principal Site and the receptors. The second image is a street view image with a view towards the receptors. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 63 (Group A Receptor 63)

- 6.54. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BA, CA and DA** shows that reflections from a northern section of Panel Area 2, the northern half of Panel Area 4 and all, except a western section, of Panel Area 6 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.55. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows vegetation between the Principal Site and the receptor. The second image is a street view image with a view towards the receptor. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptors 64 - 67 (Group A Receptors 64 - 67)

- 6.56. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BA, CA and DA** shows that reflections from a northern section of Panel Area 2, all, except a southern and an eastern section, of Panel Area 4 and all, except a western section, of Panel Area 6 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.57. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. This image shows vegetation between the Principal Site and the receptor. The second image is a ground level image taken from the position of Receptor 66 with a view towards the Panel Area 5 in the Principal Site showing the position of the sun at 12:00 UTC on January 1<sup>st</sup>. The third image is a ground level image taken from the position of Receptor 66 with a view towards the Panel Area 2 in the Principal Site showing the position of the sun at 17:15 UTC on October 1<sup>st</sup>. The fourth image is a ground level image taken from the position of Receptor 66 with a view towards the Panel Area 4 in the Principal Site showing the position of the sun at 14:30 UTC on December 1<sup>st</sup>. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptors. Therefore, the impact reduces to **Low**.

### Receptors 68 - 70 (Group A Receptors 68 - 70)

- 6.58. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix DA** shows that reflections from all, except a southern section, of Panel Area 4 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.
- 6.59. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows vegetation and intervening buildings between the Principal Site and the receptors. The second image is a street view image with a view towards Panel Area 4 in the

Principal Site. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 71 (Group A Receptor 71)

- 6.60. The 'Glint and Glare' chart in **Appendix BA, CA and DA** shows that reflections from a central section of Panel Area 2, an eastern section and a western section of Panel Area 4 and a northern section of Panel Area 6 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.61. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. This image shows vegetation between the Principal Site and the receptor. The second and third images are ground level images taken from the position of the receptor with a westwards view towards the Panel Area 2 in the Principal Site showing the position of the sun at 17:45 UTC on March 15<sup>th</sup> and at 17:00 UTC on April 1<sup>st</sup> respectively. The fifth image is a ground level image taken from the position of the receptor with a southwards view towards the Panel Area 6 in the Principal Site showing the position of the sun at 12:45 UTC on January 1<sup>st</sup>. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptors. Therefore, the impact reduces to **Low**.

### Receptor 72 (Group A Receptor 72)

- 6.62. The 'Glint and Glare' chart in **Appendix BA, CA and DA** shows that reflections from a central section of Panel Area 2, two southern sections of Panel Area 4 and a northern section and eastern section of Panel Area 6 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.
- 6.63. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red and yellow dots respectively). This image shows vegetation and intervening buildings between the Principal Site and the receptors. The second and third images are street view images with westwards views towards Panel Areas 2 and 4 and Panel Area 6 in the Principal Site respectively. These images confirm that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptors 73 - 75 (Group A Receptors 73 - 75)

- 6.64. The 'Glint and Glare' chart in **Appendix BA, CA and DA** shows that reflections from a northern section of Panel Area 1, a central section of Panel Area 2, a central section and

western section of Panel Area 4 and all of Panel Area 6 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.

6.65. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second and third images were taken (red and yellow dots respectively). This image shows dense vegetation between the Principal Site and the receptors. The second and third images are street view images with westwards views towards Panel Areas 1, 2 and 4 and Panel Area 6 in the Principal Site respectively. These images confirm that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptors 76 and 77 (Group A Receptors 76 and 77)

6.66. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BA, CA and DA** shows that reflections from a northern section of Panel Area 1, a central section of Panel Area 2, a central section of Panel Area 4 and all of Panel Area 6 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.

6.67. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows dense vegetation between the Principal Site and the receptors. The second image is a street view image with an eastwards view towards the receptors. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptor 78 (Group A Receptor 78)

6.68. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BA and CA** shows that reflections from a central section of Panel Area 2 and a northeast section of Panel Area 4 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.69. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows dense vegetation between the Principal Site and the receptors. The second image is a street view image with a westwards view towards Panel Areas 2 and 4 in the Principal Site. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptors 79 and 80 (Group A Receptors 79 and 80)

6.70. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix CA** shows that reflections from a western section of Panel Area 4 and a northern section of Panel Area 6 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.

6.71. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows dense vegetation between the Principal Site and the receptors. The second image is a street view image with an eastwards view towards the receptors. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptor 81 (Group B Receptor 1)

6.72. The 'Glint Reflections on PV Footprint' chart in **Appendix BA, BB and CB** shows that reflections from an eastern section of Panel Area 3, a southern section of Panel Area 6 and a northern section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.73. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red dot). This image shows dense vegetation between the Principal Site and the receptors. The second and third images are street view images with an eastwards and westwards view towards Panel Area 5 and Panel Areas 3 and 7 in the Principal Site respectively. This image confirms that the vegetation is sufficient to screen all views of Panel Areas 3 and 6 in the Principal Site where glint and glare is possible. Therefore, the impact remains **Low**.

#### Receptor 82 (Group B Receptor 2)

6.74. The 'Glint Reflections on PV Footprint' chart in **Appendix BB, CB and DB** shows that reflections from a central section of Panel Area 1, a western section of Panel Area 3 and a northern section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.75. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. This image shows vegetation between the Principal Site and the receptor. The second and third images are ground level images taken from the position of the receptor with a westwards view towards the Panel Areas 1, 3 and 7 in the Principal Site showing the position of the sun at 17:45 UTC on March 15<sup>th</sup> and at 16:45 UTC on May 25<sup>th</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptors. Therefore, the impact reduces to **Low**.

### Receptor 83 (Group B Receptor 3)

- 6.76. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BB, CB and DB** shows that reflections from a westerly section of Panel Area 3 and a northerly section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.77. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red and yellow dots respectively). This image shows dense vegetation between the Principal Site and the receptors. The second image is a street view image of the vegetation to the south of Panel Area 3 in the Principal Site. The third image is a photo from Google Earth with a westwards view towards the receptor. These images confirm that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptors 93 and 94 (Group B Receptor 13 and 14)

- 6.78. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BB and CB** shows that reflections from a central section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.
- 6.79. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows vegetation and intervening buildings between the Principal Site and the receptors. The second image is a street view image with an eastwards view towards Panel Area 6 in the Principal Site. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 95 (Group B Receptor 15)

- 6.80. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BB and CB** shows that reflections from a westerly section of Panel Area 3 and a central section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.81. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red and yellow dots respectively). This image shows dense vegetation between the Principal Site and the receptors. The second image is a street view image with a view towards Panel Area 3 in the Principal Site and the third image is a street view image with an eastwards view towards Panel Area 7 in the Principal Site. These images confirm that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 96 (Group B Receptor 16)

- 6.82. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix CB** shows that reflections from a western section of Panel Area 3 and a central section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.83. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red and yellow dots respectively). This image shows vegetation between the Principal Site and the receptors. The second image is a street view image with a view towards the receptor and the third image is a street view image with an eastwards view towards Panel Area 6 in the Principal Site. These images confirm that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptors 97 and 98 (Group B Receptors 17 and 18)

- 6.84. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BB, CB and DB** shows that reflections from a western section of Panel Area 3 and a central section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.
- 6.85. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second and third images were taken (red and yellow dots respectively). This image shows vegetation between the Principal Site and the receptors. The second image is a street view image with a view towards the receptors. This image confirms that the vegetation is sufficient to screen all views of Panel Area 3 in the Principal Site where glint and glare is possible. The third image is a street view image with an eastwards view towards Panel Area 7 in the Principal Site. This image confirms that the vegetation is insufficient to screen all views of Panel Area 7 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 99 (Group B Receptor 19)

- 6.86. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BB, CB and DB** shows that reflections from a central section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.87. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows vegetation and intervening buildings between the Principal Site and the receptor. The second image is a street view image with an eastwards view towards Panel Area 6 in the Principal Site. This image confirms that the intervening buildings are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 100 (Group B Receptor 20)

- 6.88. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BB, CB and DB** shows that reflections from a central section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.89. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. This image shows vegetation between the Principal Site and the receptor. The second image is a ground level image taken from the position of the receptor with an eastwards view towards Panel Area 6 in the Principal Site. This image confirms that the topography is insufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact remains **Low**.

### Receptors 101 and 102 (Group B Receptors 21 and 22)

- 6.90. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BB, CB and DB** shows that reflections from a central section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.
- 6.91. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site. This image shows vegetation between the Principal Site and the receptors. The second image is a ground level image taken from the position of Receptor 101 with an eastwards view towards Panel Area 7 in the Principal Site. This image confirms that the topography is insufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptors 103 and 104 (Group B Receptors 23 and 24)

- 6.92. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BB, CB and DB** shows that reflections from a central section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.
- 6.93. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows vegetation and intervening buildings between the Principal Site and the receptors. The second image is a Google Earth photo with an eastwards view towards Panel Area 6 in the Principal Site. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 106 (Group B Receptor 26)

- 6.94. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix CB** shows that reflections from a central section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.95. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. This image shows vegetation and intervening buildings between the Principal Site and the receptors. The second image is a ground level image taken from the position of the receptor with an eastwards view towards Panel Area 7 in the Principal Site. This image confirms that the topography is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptor 107 (Group B Receptor 27)

6.96. The 'Glint and Glare' chart in **Appendix CB** shows that reflections from a southern section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.97. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. This image shows vegetation between the Principal Site and the receptors. The second image is a ground level image taken from the position of the receptor with an eastwards view towards Panel Area 7 in the Principal Site. This image confirms that the topography is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptor 108 (Group B Receptor 28)

6.98. The 'Glint and Glare' chart in **Appendix BB, CB and DB** shows that reflections from a southern section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.99. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site. This image shows vegetation between the Principal Site and the receptors. The second image is a ground level image taken from the position of the receptor with an eastwards view towards Panel Area 7 in the Principal Site. This image confirms that the topography is insufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact remains **Low**.

#### Receptors 110 – 113 and 115 (Group B Receptors 30 – 33 and 35)

6.100. The 'Glint and Glare' chart in **Appendix BB, CB and DB** shows that reflections from a southern section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.

6.101. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows vegetation and intervening buildings between the Principal Site and the receptors. The second image is a street view image with an eastwards view towards Panel Area 6 in the Principal Site. This image confirms that the vegetation and intervening buildings

are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptors 117 and 119 (Group B Receptors 37 and 39)

- 6.102. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix CB** shows that reflections from a central section of Panel Area 3 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.
- 6.103. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows vegetation between the Principal Site and the receptors. The second image is a street view image with an eastwards view towards the receptors. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptor 122 (Group B Receptor 42)

- 6.104. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix CB** shows that reflections from a southern section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.105. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows vegetation between the Principal Site and the receptors. The second image is a street view image with an eastwards view towards the receptor. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptors 136 - 138 (Group B Receptors 56 - 58)

- 6.106. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BB and CB** shows that reflections from a central section of Panel Area 10 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.
- 6.107. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second images was taken (red dot). This image shows dense vegetation between the Principal Site and the receptors. The second image is a street view image with a westwards view towards the receptors. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptors 139 - 142 (Group B Receptors 59 - 62)

6.108. The 'Glare Reflections on PV Footprint' chart in **Appendix BB and CB** shows that reflections from all, except a northern section, of Panel Area 9 and a northwest section of Panel Area 11 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.

6.109. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second and third images were taken (red and yellow dots respectively). This image shows dense vegetation between the Principal Site and the receptors. The second image is a street view image with a westwards view towards Panel Area 9 in the Principal Site and the third image is a street view image with a westwards view towards the receptors. These images confirm that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptors 143 and 144 (Group B Receptors 63 and 64)

6.110. The 'Glare Reflections on PV Footprint' chart in **Appendix CB** shows that reflections from a northern section of Panel Area 11 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.

6.111. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows dense vegetation between the Principal Site and the receptors. The second image is a street view image with an eastwards view towards Panel Area 11 in the Principal Site. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 145 (Group B Receptor 65)

6.112. The 'Glare Reflections on PV Footprint' chart in **Appendix CB** shows that reflections from a southern section of Panel Area 11 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.113. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red dot). This image shows dense vegetation between the Principal Site and the receptor. The second image is a street view image with an eastwards view towards Panel Area 11 in the Principal Site. This image confirms that the vegetation is sufficient to screen all views of the Principal where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptors 146 and 147 (Group B Receptors 63 and 64)

6.114. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BB, CB and DB** shows that reflections from a central section of Panel Area 11 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.

6.115. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows dense vegetation and intervening buildings between the Principal Site and the receptors. The second image is a street view image with an eastwards view towards Panel Area 11 in the Principal Site. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 148 (Group B Receptor 68)

6.116. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BB, CB and DB** shows that reflections from a central section of Panel Area 11 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.117. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. This image shows dense vegetation between the Principal Site and the receptor. The second image is a ground level image taken from the position of the receptor with an eastwards view towards Panel Area 11 in the Principal Site. This image confirms that the topography is insufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptors 149 and 150 (Group B Receptors 69 and 70)

6.118. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BB and CB** shows that reflections from a northern section of Panel Area 11 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.

6.119. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site. This image shows dense vegetation between the Principal Site and the receptor. The second image is a ground level image taken from the position of Receptor 149 with an eastwards view towards Panel Area 11 in the Principal Site. This image confirms that the topography is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 151 (Group B Receptor 71)

6.120. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BB, CB and DB** shows that reflections from a central section of Panel Area 11 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.121. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. This image shows dense vegetation between the Principal Site and the receptor. The second, third and fourth images are ground level images taken from the position of the receptor with a westwards view towards the Panel Area 11 in the Principal Site showing the position of the sun at 17:45 UTC on March 20<sup>th</sup>, at 19:00 UTC on May 1<sup>st</sup> and at 19:15 UTC on July 1<sup>st</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. Therefore, the impact remains **Low**.

#### Receptors 152 - 154 (Group B Receptors 72 - 74)

6.122. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BB and CB** shows that reflections from a southern section of Panel Area 11 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.

6.123. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows dense vegetation between the Principal Site and the receptors. The second image is a street view image with an eastwards view towards Panel Area 11 in the Principal Site. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptor 155 (Group B Receptor 75)

6.124. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BB and CB** shows that reflections from a southern section of Panel Area 11 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.125. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red dot). This image shows dense vegetation between the Principal Site and the receptor. The second image is a street view image with an eastwards view towards Panel Area 11 in the Principal Site. This image confirms that the vegetation is insufficient to screen all views of in the Principal Site where glint and glare is possible. Therefore, the impact remains **Medium**.

#### Receptor 156 (Group B Receptor 76)

6.126. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BB and CB** shows that reflections from a southern section of Panel Area 11 and a northern section of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.127. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images

were taken (red dot). This image shows dense vegetation between the Principal Site and the receptor. The second image is a street view image with a westwards view towards Panel Area 11 in the Principal Site. The third image is a street view image with a view towards Panel Area 12 in the Principal Site. These images confirm that the vegetation is insufficient to screen all views of Panel Area 12 in the Principal Site where glint and glare is possible. Therefore, the impact remains **Low**.

#### Receptor 157 (Group B Receptor 77)

- 6.128. The 'Glint and Glare' chart in **Appendix BB, CB and DB** shows that reflections from a southern section of Panel Area 11, a northern section of Panel Area 13 and a southern section of Panel Area 14 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.129. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows dense vegetation between the Principal Site and the receptor. The second image is a street view image with a westwards view towards the receptor in the Principal Site. This image confirms that the vegetation is sufficient to screen all views of Panel Area 11 in the Principal Site where glint and glare is possible. The third and fourth images are ground level images taken from the position of the receptor with a westwards view towards Panel Area 13 and an eastwards view towards Panel Area 14 in the Principal Site respectively. These images confirm that the topography is insufficient to screen all views of Panel Area 13 and 14 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

#### Receptor 158 (Group B Receptor 78)

- 6.130. The 'Glint and Glare' chart in **Appendix CB** shows that reflections from a southern section of Panel Area 11 and a northern section of Panel Area 13 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.131. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red dot). This image shows dense vegetation between the Principal Site and the receptor. The second image is a street view image with an eastwards view towards Panel Area 11 in the Principal Site and the third image is a street view image with a westwards view towards Panel Area 13 in the Principal Site. These images confirm that the vegetation is sufficient to screen all views of Panel Area 11 in the Principal Site and the intervening buildings are sufficient to screen all ground floor view of Panel Area 13 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 159 and 160 (Group B Receptor 79 and 80)

6.132. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix CB** shows that reflections from a southern section of Panel Area 11 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.

6.133. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows dense vegetation between the Principal Site and the receptor. The second image is a street view image with a westwards view towards the receptors. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact remains **Low**.

### Receptor 161 (Group C Receptor 1)

6.134. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix CC** shows that reflections from a central section of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.

6.135. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows vegetation and intervening buildings between the Principal Site and the receptor. The second image is a street view image with a view towards the receptor. This image confirms that the intervening buildings are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact remains **Low**.

### Receptors 162 and 163 (Group C Receptors 2 and 3)

6.136. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BC, CC and DC** shows that reflections from a central section of Panel Area 13 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.

6.137. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second image was taken (red dot). The second image is a street view image with a view towards the receptor. This image confirms that the vegetation is insufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 164 (Group C Receptor 4)

6.138. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BC, CC and DC** shows that reflections from a central section of Panel Area 13, a eastern section of Panel Area 14 and a southern section of Panel Area 15 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.139. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). The second image is a street view image with a view towards the receptor. This image confirms that the vegetation is insufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact remains **Low**.

#### Receptors 16 – 173, 178 - 183 and 185 - 192 (Group C Receptors 9, 11 – 13 and 18 - 32)

6.140. The 'Glint Reflections on PV Footprint' chart in **Appendix BC and CC** shows that reflections from a southeast section of Panel Area 11, all, except a southern and northern section, of Panel Area 13, all of Panel Area 14 and all, except a northern section and small southern section, of Panel Area 15 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.141. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second, third and fourth images were taken (red, yellow and blue dots respectively). This image shows dense vegetation between the Principal Site and the receptor. The second image is a street view image with a southwest view towards the receptors. This image confirms that the vegetation is sufficient to screen all views of Panel Area 11 in the Principal Site where glint and glare is possible. The third and fourth images are street view images with eastwards views towards the receptors. These images confirm that the vegetation is insufficient to screen views of Panel Areas 13, 14 and 15 in the Principal Site from Receptors 183, 185 and 187 – 190. The fifth, sixth and seventh images are ground level images taken from the position of Receptor 187 with a westwards view towards Panel Areas 13, 14 and 15 in the Principal Site showing the position of the sun at 17:45 UTC on March 25<sup>th</sup>, at 17:00 UTC on May 1<sup>st</sup> and at 19:00 UTC on June 1<sup>st</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at Receptors 183, 185 and 187 - 190. Therefore, the impact upon Receptors 183, 185 and 187 - 190 remains **Low** and the impact upon Receptors 16 – 173, 178 - 186, 191 and 192 reduces to **None**.

#### Receptor 193 (Group C Receptor 33)

6.142. The 'Glint Reflections on PV Footprint' chart in **Appendix BC and CC** shows that reflections from a southern section of Panel Area 13 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.143. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows dense vegetation and intervening buildings between the Principal Site and the receptor. The second image is a street view image with a view towards Panel Area 13 in the Principal Site. This image confirms that the vegetation and intervening buildings are

sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptors 194, 195 and 203 (Group C Receptors 34, 35 and 43)

- 6.144. The 'Glint Reflections on PV Footprint' chart in **Appendix BC and CC** shows that reflections from a southern section of Panel Area 13 (see **Figure 6: Appendix A**) of the Solar PV Site can potentially impact on the receptors.
- 6.145. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Solar PV Site, and the location from which the second image was taken (red dot). This image shows dense vegetation and intervening buildings between the Solar PV Site and the receptor. The second image is a street view image with a view towards Panel Area 13 in the Solar PV Site. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of the Solar PV Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptors 196 and 197 (Group C Receptors 36 and 37)

- 6.146. The 'Glint Reflections on PV Footprint' chart in **Appendix BC and CC** shows that reflections from a southern section of Panel Area 13 (see **Figure 6: Appendix A**) of the Solar PV Site can potentially impact on the receptors.
- 6.147. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Solar PV Site, and the location from which the second image was taken (red dot). This image shows dense vegetation between the Solar PV Site and the receptor. The second image is a street view image with a view towards Panel Area 13 in the Solar PV Site. This image confirms that the vegetation is insufficient to screen all views of the Solar PV Site where glint and glare is possible. Therefore, the impact remains **Medium**.

#### Receptor 198 (Group C Receptor 38)

- 6.148. The 'Glint Reflections on PV Footprint' chart in **Appendix BC** shows that reflections from a southern section of Panel Area 13 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.149. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. This image shows vegetation between the Principal Site and the receptor. The second and third images are ground level images taken from the position of the receptor with an eastwards view towards Panel Area 13 in the Principal Site showing the position of the sun at 05:30 UTC on May 1<sup>st</sup> and at 05:00 UTC on July 1<sup>st</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar

array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. Therefore, the impact remains **Low**.

### Receptor 199 (Group C Receptor 39)

- 6.150. The 'Glint and Glare' chart in **Appendix BC** shows that reflections from a southern section of Panel Area 13 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.151. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. This image shows vegetation between the Principal Site and the receptor. The second and third images are ground level images taken from the position of the receptor with an eastwards view towards Panel Area 13 in the Principal Site showing the position of the sun at 05:00 UTC on May 15<sup>th</sup> and at 05:00 UTC on July 1<sup>st</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. Therefore, the impact remains **Low**.

### Receptor 202 (Group C Receptor 42)

- 6.152. The 'Glint and Glare' chart in **Appendix BC and CC** shows that reflections from a southern section of Panel Area 13 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.153. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows vegetation and intervening buildings between the Principal Site and the receptor. The second image is a street view image with a view towards Panel Area 13 in the Principal Site. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 206 (Group D Receptor 3)

- 6.154. The 'Glint and Glare' chart in **Appendix BD** shows that reflections from a northern section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.155. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows vegetation between the Principal Site and the receptor. The second image is a street view image with a view towards Panel Area 7 in the Principal Site. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptors 207 - 210 (Group D Receptors 4 - 7)

6.156. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BD and CD** shows that reflections from a western section of Panel Area 3 and a northern section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.

6.157. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second and third images were taken (red and yellow dots respectively). This image shows vegetation between the Principal Site and the receptor. The second image is a street view image with a view of the vegetation to the north of the receptors and the third image is a street view image with a view towards Panel Area 7 in the Principal Site. These images confirm that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptors 211 - 214 (Group D Receptors 8 - 11)

6.158. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BD and CD** shows that reflections from a western section of Panel Area 1, a western section of Panel Area 3 and a northern section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.

6.159. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second and third images were taken (red and yellow dots respectively). This image shows vegetation between the Principal Site and the receptor. The second image is a street view image with a view of the vegetation to the north of the receptors and the third image is a street view image with a view towards Panel Area 7 in the Principal Site. These images confirm that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptors 215 and 216 (Group D Receptors 12 and 13)

6.160. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BD and CD** shows that reflections from a western section of Panel Area 3 and a northern section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.

6.161. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second and third images were taken (red and yellow dots respectively). This image shows vegetation between the Principal Site and the receptor. The second image is a street view image with a view of the vegetation to the north of the receptors and the third image is a street view image with a view towards Panel Area 7 in the Principal Site. These images confirm that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptors 217 - 219 (Group D Receptors 14 - 16)

6.162. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BD and CD** shows that reflections from a western section of Panel Area 3 and a northern section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.

6.163. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second image was taken (red dot). This image shows vegetation between the Principal Site and the receptor. The second image is a street view image with a view of the vegetation to the north of the receptors and the third image is a ground level image taken from the position of Receptor 18 with a view towards Panel Area 7 in the Principal Site showing the position of the sun at 06:45 UTC on April 15<sup>th</sup>. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glint and glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the vegetation is sufficient to screen all views of Panel Area 3 in the Principal Site that the sun will be the main source of solar reflection at the receptor from Panel Area 7 where glint and glare is possible. Therefore, the impact reduces to **Low**.

### Receptors 220 and 221 (Group D Receptors 17 and 18)

6.164. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BD and CD** shows that reflections from a western section of Panel Area 3 and a central section of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptors.

6.165. The first image in **Appendix Q** is an aerial view which shows the location of the receptors (yellow pins) in relation to the Principal Site, and the location from which the second and third images were taken (red and yellow dots respectively). This image shows vegetation between the Principal Site and the receptor. The second image is a street view image with a view towards Panel Area 3 in the Principal Site and the third image is a street view image with a view towards Panel Area 7 in the Principal Site. These images confirm that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 222 (Group D Receptor 19)

6.166. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix BD** shows that reflections from a western section of Panel Area 3 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.167. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red dot). This image shows vegetation between the Principal Site and the receptor. The second image is a street view image with a view towards Panel Area 3 in the Principal Site.

This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Residential Area 1

6.168. This encompasses a number of residential receptors including those at Receptors 4 and 5 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these two receptors, the impacts on the other receptors within this area are assessed as being **None (worst case scenario)**.

### Residential Area 2

6.169. This encompasses a number of residential receptors including those at Receptors 13 - 19 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these seven receptors, the impacts on the other receptors within this area are assessed as being **Low (worst case scenario)**.

### Residential Area 3

6.170. This encompasses a number of residential receptors including those at Receptors 23 and 24 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these two receptors, the impacts on the other receptors within this area are assessed as being **Low (worst case scenario)**.

### Residential Area 4

6.171. This encompasses a number of residential receptors including those at Receptors 38 - 41 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these four receptors, the impacts on the other receptors within this area are assessed as being **Low (worst case scenario)**.

### Residential Area 5

6.172. This encompasses a number of residential receptors including those at Receptors 43 - 45 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these three receptors, the impacts on the other receptors within this area are assessed as being **None (worst case scenario)**.

### Residential Area 6

6.173. This encompasses a number of residential receptors including those at Receptors 50 and 51 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these two receptors, the impacts on the other receptors within this area are assessed as being **None (worst case scenario)**.

### Residential Area 7

6.174. This encompasses a number of residential receptors including those at Receptors 52 - 67 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these 16 receptors, the impacts on the other receptors within this area are assessed as being **Low (worst case scenario)**.

### Residential Area 8

6.175. This encompasses a number of residential receptors including those at Receptors 68 - 70 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these three receptors, the impacts on the other receptors within this area are assessed as being **None (worst case scenario)**.

### Residential Area 9

6.176. This encompasses a number of residential receptors including those at Receptors 73 and 74 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed

for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these two receptors, the impacts on the other receptors within this area are assessed as being **None (worst case scenario)**.

### Residential Area 10

6.177. This encompasses a number of residential receptors including those at Receptors 87 - 116 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these 30 receptors, the impacts on the other receptors within this area are assessed as being **High (worst case scenario)**.

### Residential Area 11

6.178. This encompasses a number of residential receptors including those at Receptors 117 - 120 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these four receptors, the impacts on the other receptors within this area are assessed as being **Low (worst case scenario)**.

### Residential Area 12

6.179. This encompasses a number of residential receptors including those at Receptors 123 and 124 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these two receptors, the impacts on the other receptors within this area are assessed as being **None (worst case scenario)**.

### Residential Area 13

6.180. This encompasses a number of residential receptors including those at Receptors 126 - 131(assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these six receptors, the impacts on the other receptors within this area are assessed as being **None (worst case scenario)**.

## Residential Area 14

6.181. This encompasses a number of residential receptors including those at Receptors 134 and 135 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these two receptors, the impacts on the other receptors within this area are assessed as being **None (worst case scenario)**.

## Residential Area 15

6.182. This encompasses a number of residential receptors including those at Receptors 136 - 138 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these three receptors, the impacts on the other receptors within this area are assessed as being **Medium (worst case scenario)**.

## Residential Area 16

6.183. This encompasses a number of residential receptors including those at Receptors 139 - 142 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these four receptors, the impacts on the other receptors within this area are assessed as being **None (worst case scenario)**.

## Residential Area 17

6.184. This encompasses a number of residential receptors including those at Receptors 143 and 144 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these two receptors, the impacts on the other receptors within this area are assessed as being **None (worst case scenario)**.

## Residential Area 18

6.185. This encompasses a number of residential receptors including those at Receptors 152 - 154 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple

receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these three receptors, the impacts on the other receptors within this area are assessed as being **None (worst case scenario)**.

### Residential Area 19

6.186. This encompasses a number of residential receptors including those at Receptors 169 - 192 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these 24 receptors, the impacts on the other receptors within this area are assessed as being **Low (worst case scenario)**.

### Residential Area 20

6.187. This encompasses a number of residential receptors including those at Receptors 194 and 195 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these two receptors, the impacts on the other receptors within this area are assessed as being **None (worst case scenario)**.

### Residential Area 21

6.188. This encompasses a number of residential receptors including those at Receptors 196 - 203 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these eight receptors, the impacts on the other receptors within this area are assessed as being **Low (worst case scenario)**.

### Residential Area 22

6.189. This encompasses a number of residential receptors including those at Receptors 204 - 228 (assessed previously) (See **Figure 1: Appendix A**). Each receptor assessed represents multiple receptors as they are in close proximity of each other, so the worst-case scenario is assumed for the impact of glint and glare. All receptors were considered within the visibility assessment, and it was concluded their impacts were similar. As per the assessments of these 25 receptors,

the impacts on the other receptors within this area are assessed as being **Low (worst case scenario)**.

## Road Receptors

6.190. **Table 181818** shows a summary of the modelling results for each of the Road Receptor Points and shows which panel configuration (minimum or maximum angle for fixed tilt or single axis tracker) produces the highest impact upon the receptor, whilst the detailed results and ocular impact charts can be viewed in **Appendix EA - GC**.

6.191. **Appendix EA, EB and EC** shows the analysis for Receptors 1 – 80, 81 - 157 and 158 – 200 respectively with a tilt angle of 5 degrees, **Appendix FA, FB and FC** shows the analysis for Receptors 1 – 79, 80 - 151 and 152 – 215 respectively with a tilt angle of 45 degrees and **Appendix GA, GB and GC** shows the analysis for Receptors 1 – 80, 81 - 153 and 154 – 217 respectively with tracker panels.

6.192. The 26 receptors (218 - 243) within the no-reflection zones outlined previously have been excluded from the detailed modelling as they will never receive glint and glare impacts from the Proposed Development.

**Table 1818: Potential for Glint and Glare Impact on Road Based Receptors**

| Receptor | Green Glare (mins per year) | Yellow Glare (mins per year) | Red Glare (mins per year) | Magnitude of Impact | Worst Case Tilt Angle (degrees) |
|----------|-----------------------------|------------------------------|---------------------------|---------------------|---------------------------------|
| 1        | 5442                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 2        | 5561                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 3        | 5954                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 4        | 6131                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 5        | 6504                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 6        | 6743                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 7        | 8834                        | 4986                         | 0                         | High                | 45 (FSF)                        |
| 8        | 8052                        | 4626                         | 0                         | High                | 45 (FSF)                        |
| 9        | 5290                        | 2737                         | 0                         | High                | 5 (FSF)                         |
| 10       | 3833                        | 2237                         | 0                         | High                | 5 (FSF)                         |
| 11       | 7326                        | 2677                         | 0                         | High                | 5 (FSF)                         |
| 12       | 10559                       | 8687                         | 0                         | High                | 45 (FSF)                        |

| Receptor | Green Glare (mins per year) | Yellow Glare (mins per year) | Red Glare (mins per year) | Magnitude of Impact | Worst Case Tilt Angle (degrees) |
|----------|-----------------------------|------------------------------|---------------------------|---------------------|---------------------------------|
| 13       | 10371                       | 7791                         | 0                         | High                | 45 (FSF)                        |
| 14       | 8205                        | 4173                         | 0                         | High                | 45 (FSF)                        |
| 15       | 9815                        | 7515                         | 0                         | High                | 45 (FSF)                        |
| 16       | 7732                        | 6465                         | 0                         | High                | 45 (FSF)                        |
| 17       | 6351                        | 3492                         | 0                         | High                | 45 (FSF)                        |
| 18       | 3137                        | 2803                         | 0                         | High                | 5 (FSF)                         |
| 19       | 6015                        | 2438                         | 0                         | High                | 45 (FSF)                        |
| 20       | 4505                        | 1346                         | 0                         | High                | 45 (FSF)                        |
| 21       | 3339                        | 729                          | 0                         | High                | 45 (FSF)                        |
| 22       | 1869                        | 601                          | 0                         | High                | 45 (FSF)                        |
| 23       | 1405                        | 369                          | 0                         | High                | 45 (FSF)                        |
| 24       | 1231                        | 20                           | 0                         | High                | 45 (FSF)                        |
| 25       | 936                         | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 26       | 1276                        | 0                            | 0                         | Low                 | Tracker (SAT)                   |
| 27       | 1438                        | 0                            | 0                         | Low                 | Tracker (SAT)                   |
| 28       | 1338                        | 0                            | 0                         | Low                 | Tracker (SAT)                   |
| 29       | 800                         | 0                            | 0                         | Low                 | Tracker (SAT)                   |
| 30       | 9553                        | 579                          | 0                         | High                | 45 (FSF)                        |
| 31       | 5578                        | 589                          | 0                         | High                | 5 (FSF)                         |
| 32       | 4836                        | 969                          | 0                         | High                | 5 (FSF)                         |
| 33       | 4678                        | 1153                         | 0                         | High                | 5 (FSF)                         |
| 34       | 8997                        | 69                           | 0                         | High                | 45 (FSF)                        |
| 35       | 9233                        | 33                           | 0                         | High                | 45 (FSF)                        |
| 36       | 4703                        | 50                           | 0                         | High                | 5 (FSF)                         |
| 37       | 6049                        | 0                            | 0                         | Low                 | 45 (FSF)                        |

| Receptor | Green Glare (mins per year) | Yellow Glare (mins per year) | Red Glare (mins per year) | Magnitude of Impact | Worst Case Tilt Angle (degrees) |
|----------|-----------------------------|------------------------------|---------------------------|---------------------|---------------------------------|
| 38       | 9183                        | 463                          | 0                         | High                | 45 (FSF)                        |
| 39       | 5782                        | 1049                         | 0                         | High                | 5 (FSF)                         |
| 40       | 5593                        | 1526                         | 0                         | High                | 5 (FSF)                         |
| 41       | 4857                        | 3073                         | 0                         | High                | 5 (FSF)                         |
| 42       | 5057                        | 2450                         | 0                         | High                | 5 (FSF)                         |
| 43       | 7534                        | 1269                         | 0                         | High                | 45 (FSF)                        |
| 44       | 7639                        | 763                          | 0                         | High                | 45 (FSF)                        |
| 45       | 4853                        | 784                          | 0                         | High                | 45 (FSF)                        |
| 46       | 2851                        | 663                          | 0                         | High                | 45 (FSF)                        |
| 47       | 2644                        | 694                          | 0                         | High                | 45 (FSF)                        |
| 48       | 2098                        | 485                          | 0                         | High                | 45 (FSF)                        |
| 49       | 1669                        | 200                          | 0                         | High                | 45 (FSF)                        |
| 50       | 1004                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 51       | 555                         | 0                            | 0                         | Low                 | Tracker (SAT)                   |
| 52       | 582                         | 0                            | 0                         | Low                 | Tracker (SAT)                   |
| 53       | 422                         | 0                            | 0                         | Low                 | Tracker (SAT)                   |
| 54       | 175                         | 0                            | 0                         | Low                 | Tracker (SAT)                   |
| 55       | 50                          | 0                            | 0                         | Low                 | Tracker (SAT)                   |
| 56       | 0                           | 0                            | 0                         | None                | N/A                             |
| 57       | 150                         | 0                            | 0                         | Low                 | Tracker (SAT)                   |
| 58       | 7399                        | 1209                         | 0                         | High                | 45 (FSF)                        |
| 59       | 7538                        | 971                          | 0                         | High                | 45 (FSF)                        |
| 60       | 3463                        | 0                            | 0                         | Low                 | Tracker (SAT)                   |
| 61       | 2443                        | 0                            | 0                         | Low                 | Tracker (SAT)                   |
| 62       | 2252                        | 45                           | 0                         | High                | Tracker (SAT)                   |

| Receptor | Green Glare (mins per year) | Yellow Glare (mins per year) | Red Glare (mins per year) | Magnitude of Impact | Worst Case Tilt Angle (degrees) |
|----------|-----------------------------|------------------------------|---------------------------|---------------------|---------------------------------|
| 63       | 1635                        | 102                          | 0                         | High                | Tracker (SAT)                   |
| 64       | 4039                        | 0                            | 0                         | Low                 | Tracker (SAT)                   |
| 65       | 5073                        | 406                          | 0                         | High                | Tracker (SAT)                   |
| 66       | 4846                        | 1263                         | 0                         | High                | Tracker (SAT)                   |
| 67       | 4585                        | 957                          | 0                         | High                | Tracker (SAT)                   |
| 68       | 3689                        | 765                          | 0                         | High                | Tracker (SAT)                   |
| 69       | 3050                        | 283                          | 0                         | High                | Tracker (SAT)                   |
| 70       | 1879                        | 81                           | 0                         | High                | Tracker (SAT)                   |
| 71       | 1414                        | 0                            | 0                         | Low                 | Tracker (SAT)                   |
| 72       | 846                         | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 73       | 5383                        | 1265                         | 0                         | High                | Tracker                         |
| 74       | 3420                        | 91                           | 0                         | High                | Tracker                         |
| 75       | 3823                        | 110                          | 0                         | High                | Tracker                         |
| 76       | 2905                        | 917                          | 0                         | High                | 45 (FSF)                        |
| 77       | 4275                        | 781                          | 0                         | High                | Tracker                         |
| 78       | 5046                        | 1589                         | 0                         | High                | Tracker                         |
| 79       | 3381                        | 1207                         | 0                         | High                | 45 (FSF)                        |
| 80       | 5305                        | 7422                         | 0                         | High                | 45 (FSF)                        |
| 81       | 3039                        | 4921                         | 0                         | High                | Tracker                         |
| 82       | 8660                        | 5271                         | 0                         | High                | 45 (FSF)                        |
| 83       | 9526                        | 6873                         | 0                         | High                | 45 (FSF)                        |
| 84       | 11772                       | 3879                         | 0                         | High                | 45 (FSF)                        |
| 85       | 12004                       | 3564                         | 0                         | High                | 45 (FSF)                        |
| 86       | 13381                       | 8094                         | 0                         | High                | 45 (FSF)                        |
| 87       | 10128                       | 800                          | 0                         | High                | 45 (FSF)                        |

| Receptor | Green Glare (mins per year) | Yellow Glare (mins per year) | Red Glare (mins per year) | Magnitude of Impact | Worst Case Tilt Angle (degrees) |
|----------|-----------------------------|------------------------------|---------------------------|---------------------|---------------------------------|
| 88       | 9268                        | 348                          | 0                         | High                | 45 (FSF)                        |
| 89       | 7359                        | 120                          | 0                         | High                | 45 (FSF)                        |
| 90       | 4418                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 91       | 6164                        | 530                          | 0                         | High                | 45 (FSF)                        |
| 92       | 4762                        | 163                          | 0                         | High                | 45 (FSF)                        |
| 93       | 6703                        | 3788                         | 0                         | High                | 45 (FSF)                        |
| 94       | 4545                        | 3199                         | 0                         | High                | 5 (FSF)                         |
| 95       | 5067                        | 1997                         | 0                         | High                | 5 (FSF)                         |
| 96       | 5727                        | 1469                         | 0                         | High                | 5 (FSF)                         |
| 97       | 7437                        | 710                          | 0                         | High                | 45 (FSF)                        |
| 98       | 3174                        | 247                          | 0                         | High                | 45 (FSF)                        |
| 99       | 6141                        | 1944                         | 0                         | High                | 45 (FSF)                        |
| 100      | 9622                        | 2647                         | 0                         | High                | 45 (FSF)                        |
| 101      | 5179                        | 4172                         | 0                         | High                | 45 (FSF)                        |
| 102      | 6331                        | 1756                         | 0                         | High                | 45 (FSF)                        |
| 103      | 8162                        | 391                          | 0                         | High                | 45 (FSF)                        |
| 104      | 4743                        | 237                          | 0                         | High                | 5 (FSF)                         |
| 105      | 5310                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 106      | 3069                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 107      | 4028                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 108      | 3566                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 109      | 7008                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 110      | 4924                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 111      | 4366                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 112      | 3052                        | 3052                         | 0                         | High                | 5 (FSF)                         |

| Receptor | Green Glare (mins per year) | Yellow Glare (mins per year) | Red Glare (mins per year) | Magnitude of Impact | Worst Case Tilt Angle (degrees) |
|----------|-----------------------------|------------------------------|---------------------------|---------------------|---------------------------------|
| 113      | 11116                       | 5238                         | 0                         | High                | 45 (FSF)                        |
| 114      | 13296                       | 583                          | 0                         | High                | 45 (FSF)                        |
| 115      | 11954                       | 210                          | 0                         | High                | 45 (FSF)                        |
| 116      | 12441                       | 31                           | 0                         | High                | 45 (FSF)                        |
| 117      | 11652                       | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 118      | 9718                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 119      | 2057                        | 9                            | 0                         | High                | Tracker                         |
| 120      | 8793                        | 15                           | 0                         | High                | 45 (FSF)                        |
| 121      | 10101                       | 23                           | 0                         | High                | 45 (FSF)                        |
| 122      | 13904                       | 51                           | 0                         | High                | 45 (FSF)                        |
| 123      | 14370                       | 115                          | 0                         | High                | 45 (FSF)                        |
| 124      | 13439                       | 159                          | 0                         | High                | 45 (FSF)                        |
| 125      | 12488                       | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 126      | 10415                       | 57                           | 0                         | High                | 45 (FSF)                        |
| 127      | 5014                        | 164                          | 0                         | High                | 45 (FSF)                        |
| 128      | 4402                        | 109                          | 0                         | High                | 45 (FSF)                        |
| 129      | 651                         | 311                          | 0                         | High                | Tracker                         |
| 130      | 4274                        | 3956                         | 0                         | High                | 45 (FSF)                        |
| 131      | 5194                        | 1478                         | 0                         | High                | 45 (FSF)                        |
| 132      | 5772                        | 860                          | 0                         | High                | 45 (FSF)                        |
| 133      | 5113                        | 423                          | 0                         | High                | 45 (FSF)                        |
| 134      | 2510                        | 78                           | 0                         | High                | 5 (FSF)                         |
| 135      | 3523                        | 35                           | 0                         | High                | 5 (FSF)                         |
| 136      | 13217                       | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 137      | 12328                       | 0                            | 0                         | Low                 | 45 (FSF)                        |

| Receptor | Green Glare (mins per year) | Yellow Glare (mins per year) | Red Glare (mins per year) | Magnitude of Impact | Worst Case Tilt Angle (degrees) |
|----------|-----------------------------|------------------------------|---------------------------|---------------------|---------------------------------|
| 138      | 10530                       | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 139      | 11697                       | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 140      | 10018                       | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 141      | 8378                        | 61                           | 0                         | High                | 5 (FSF)                         |
| 142      | 1623                        | 9                            | 0                         | High                | Tracker                         |
| 143      | 2304                        | 714                          | 0                         | High                | Tracker                         |
| 144      | 12440                       | 7107                         | 0                         | High                | 5 (FSF)                         |
| 145      | 12464                       | 6187                         | 0                         | High                | 45 (FSF)                        |
| 146      | 11520                       | 4509                         | 0                         | High                | 45 (FSF)                        |
| 147      | 7366                        | 7547                         | 0                         | High                | 45 (FSF)                        |
| 148      | 5305                        | 2288                         | 0                         | High                | 45 (FSF)                        |
| 149      | 5412                        | 1253                         | 0                         | High                | 45 (FSF)                        |
| 150      | 5161                        | 475                          | 0                         | High                | 45 (FSF)                        |
| 151      | 4097                        | 217                          | 0                         | High                | 45 (FSF)                        |
| 152      | 3270                        | 148                          | 0                         | High                | 45 (FSF)                        |
| 153      | 2210                        | 36                           | 0                         | High                | 45 (FSF)                        |
| 154      | 5051                        | 2                            | 0                         | High                | 5 (FSF)                         |
| 155      | 4132                        | 17                           | 0                         | High                | 45 (FSF)                        |
| 156      | 4407                        | 8                            | 0                         | High                | 45 (FSF)                        |
| 157      | 707                         | 6                            | 0                         | High                | 45 (FSF)                        |
| 158      | 2414                        | 86                           | 0                         | High                | 45 (FSF)                        |
| 159      | 634                         | 505                          | 0                         | High                | 45 (FSF)                        |
| 160      | 4918                        | 710                          | 0                         | High                | 5 (FSF)                         |
| 161      | 2243                        | 1842                         | 0                         | High                | 5 (FSF)                         |
| 162      | 2287                        | 1153                         | 0                         | High                | 5 (FSF)                         |

| Receptor | Green Glare (mins per year) | Yellow Glare (mins per year) | Red Glare (mins per year) | Magnitude of Impact | Worst Case Tilt Angle (degrees) |
|----------|-----------------------------|------------------------------|---------------------------|---------------------|---------------------------------|
| 163      | 5967                        | 0                            | 0                         | Low                 | 5 (FSF)                         |
| 164      | 4237                        | 0                            | 0                         | Low                 | 5 (FSF)                         |
| 165      | 4679                        | 0                            | 0                         | Low                 | 5 (FSF)                         |
| 166      | 330                         | 0                            | 0                         | Low                 | Tracker                         |
| 167      | 1144                        | 0                            | 0                         | Low                 | 5 (FSF)                         |
| 168      | 1138                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 169      | 1566                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 170      | 1767                        | 0                            | 0                         | Low                 | 5 (FSF)                         |
| 171      | 2604                        | 0                            | 0                         | Low                 | 5 (FSF)                         |
| 172      | 2651                        | 0                            | 0                         | Low                 | 5 (FSF)                         |
| 173      | 2865                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 174      | 2929                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 175      | 3231                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 176      | 5086                        | 1329                         | 0                         | High                | 45 (FSF)                        |
| 177      | 5417                        | 8699                         | 0                         | High                | 45 (FSF)                        |
| 178      | 3583                        | 3460                         | 0                         | High                | 45 (FSF)                        |
| 179      | 5778                        | 2067                         | 0                         | High                | 5 (FSF)                         |
| 180      | 4241                        | 2270                         | 0                         | High                | 5 (FSF)                         |
| 181      | 4444                        | 4651                         | 0                         | High                | 5 (FSF)                         |
| 182      | 12291                       | 15063                        | 0                         | High                | 5 (FSF)                         |
| 183      | 16122                       | 16121                        | 0                         | High                | 5 (FSF)                         |
| 184      | 13152                       | 15581                        | 0                         | High                | 5 (FSF)                         |
| 185      | 16663                       | 6070                         | 0                         | High                | 5 (FSF)                         |
| 186      | 3665                        | 3445                         | 0                         | High                | 5 (FSF)                         |
| 187      | 279                         | 77                           | 0                         | High                | SAT                             |

| Receptor | Green Glare (mins per year) | Yellow Glare (mins per year) | Red Glare (mins per year) | Magnitude of Impact | Worst Case Tilt Angle (degrees) |
|----------|-----------------------------|------------------------------|---------------------------|---------------------|---------------------------------|
| 188      | 6096                        | 1559                         | 0                         | High                | 5 (FSF)                         |
| 189      | 5144                        | 2566                         | 0                         | High                | 5 (FSF)                         |
| 190      | 4712                        | 2709                         | 0                         | High                | 5 (FSF)                         |
| 191      | 5498                        | 2594                         | 0                         | High                | 5 (FSF)                         |
| 192      | 4423                        | 1542                         | 0                         | High                | 5 (FSF)                         |
| 193      | 621                         | 502                          | 0                         | High                | 45 (FSF)                        |
| 194      | 612                         | 175                          | 0                         | High                | 45 (FSF)                        |
| 195      | 587                         | 38                           | 0                         | High                | SAT                             |
| 196      | 0                           | 0                            | 0                         | None                | N/A                             |
| 197      | 1276                        | 0                            | 0                         | Low                 | 5 (FSF)                         |
| 198      | 2174                        | 737                          | 0                         | High                | 5 (FSF)                         |
| 199      | 3614                        | 877                          | 0                         | High                | 5 (FSF)                         |
| 200      | 2873                        | 2248                         | 0                         | High                | 5 (FSF)                         |
| 201      | 3295                        | 2406                         | 0                         | High                | 5 (FSF)                         |
| 202      | 562                         | 774                          | 0                         | High                | 45 (FSF)                        |
| 203      | 6371                        | 519                          | 0                         | High                | 5 (FSF)                         |
| 204      | 616                         | 12                           | 0                         | High                | SAT                             |
| 205      | 8809                        | 0                            | 0                         | Low                 | 5 (FSF)                         |
| 206      | 8119                        | 0                            | 0                         | Low                 | 5 (FSF)                         |
| 207      | 3111                        | 0                            | 0                         | Low                 | 5 (FSF)                         |
| 208      | 2322                        | 0                            | 0                         | Low                 | 5 (FSF)                         |
| 209      | 6546                        | 0                            | 0                         | Low                 | 45 (FSF)                        |
| 210      | 5260                        | 160                          | 0                         | High                | 45 (FSF)                        |
| 211      | 6035                        | 736                          | 0                         | High                | 45 (FSF)                        |
| 212      | 9047                        | 1004                         | 0                         | High                | 5 (FSF)                         |

| Receptor | Green Glare (mins per year) | Yellow Glare (mins per year) | Red Glare (mins per year) | Magnitude of Impact | Worst Case Tilt Angle (degrees) |
|----------|-----------------------------|------------------------------|---------------------------|---------------------|---------------------------------|
| 213      | 8451                        | 2960                         | 0                         | High                | 5 (FSF)                         |
| 214      | 8988                        | 3157                         | 0                         | High                | 5 (FSF)                         |
| 215      | 7587                        | 3607                         | 0                         | High                | 5 (FSF)                         |
| 216      | 6896                        | 4107                         | 0                         | High                | 5 (FSF)                         |
| 217      | 5349                        | 3294                         | 0                         | High                | 5 (FSF)                         |

6.193. As can be seen in **Table 1818**, there are 156 receptor points that have potential glare impacts with the “potential for after-image” (Yellow Glare), which is a **High** impact, and 59 receptors with the “low potential for after-image” (Green Glare), which is a **Low** impact. **Appendix GA - GC** show detailed analysis of when the glint and glare impacts are possible, whilst also showing from which parts of the Principal Site the solar glint is reflected.

6.194. **Appendix Q** shows Google Earth images taken towards the Principal Site location at each of the receptor points where an impact is anticipated. The first image is a ground level terrain view and is based on the height data of the surrounding land showing no intervening vegetation or buildings. The Principal Site has been drawn as a white polygon and can be seen on the images when the Principal Site is theoretically visible. The area of the Principal Site from where reflections may be possible has been drawn as a yellow or green polygon. The second image is a street view image pointing in the same direction as the terrain image. This gives a good indication as to whether the area of the Principal Site where reflections are theoretically possible will be visible from the receptor point. For some receptors, a field of view (FOV) has been drawn between two red lines, where the glare is situated outside this FOV, and therefore the impact is reduced to **None**.

6.195. As can be seen in **Appendix Q**, views of the Principal Site from those receptors with a potential glare impact, except receptors 13 – 16, 45, 78 - 80, 82 – 84, 98 – 101, 113, 144 – 148 and 177 – 182, are blocked by a mixture of intervening vegetation, topography and buildings or are outside the field of view of the driver. Therefore, impacts upon these receptors reduce to **None**. The impact upon receptors 13 – 16, 45, 78 - 80, 82 – 84, 98 – 101, 113, 144 – 148 and 177 – 182 remains **High**.

## Rail Receptors

6.196. **Table 1919** shows a summary of the modelling results for each of the Rail Receptor Points and shows which panel configuration (minimum or maximum angle for fixed tilt or single axis tracker) produces the highest impact upon the receptor, whilst the detailed results and ocular impact charts can be viewed in **Appendix H, I and J**.

6.197. **Appendix H** shows the analysis for a tilt angle of 5 degrees, **Appendix I** shows the analysis for a tilt angle of 45 degrees and **Appendix J** shows the analysis for the tracker panels.

6.198. The seven receptors (14 - 20) within the no-reflection zones outlined previously have been excluded from the detailed modelling as it will never receive glint and glare impacts from the Proposed Development.

**Table 1919: Potential for Glint and Glare Impact on Rail Based Receptors**

| Receptor | Green Glare (mins per year) | Yellow Glare (mins per year) | Red Glare (mins per year) | Magnitude of Impact | Worst Case Tilt Angle (degrees) |
|----------|-----------------------------|------------------------------|---------------------------|---------------------|---------------------------------|
| 1        | 3503                        | 200                          | 0                         | High                | 45                              |
| 2        | 2431                        | 327                          | 0                         | High                | 45                              |
| 3        | 1263                        | 286                          | 0                         | High                | 45                              |
| 4        | 1029                        | 255                          | 0                         | High                | 45                              |
| 5        | 884                         | 110                          | 0                         | High                | 45                              |
| 6        | 705                         | 0                            | 0                         | Low                 | Tracker                         |
| 7        | 763                         | 0                            | 0                         | Low                 | Tracker                         |
| 8        | 616                         | 0                            | 0                         | Low                 | Tracker                         |
| 9        | 213                         | 0                            | 0                         | Low                 | Tracker                         |
| 10       | 771                         | 0                            | 0                         | Low                 | Tracker                         |
| 11       | 692                         | 0                            | 0                         | Low                 | Tracker                         |
| 12       | 838                         | 0                            | 0                         | Low                 | Tracker                         |
| 13       | 780                         | 0                            | 0                         | Low                 | Tracker                         |

6.199. As can be seen in **Table 1919**, there are five receptor points have potential glare impacts with the “potential for after-image” (Yellow Glare), which is a **High** impact, and eight receptors with the “low potential for after-image” (Green Glare), which is a **Low** impact. **Appendix H, I and J** show detailed analysis of when the glint and glare impacts are possible, whilst also showing from which parts of the Principal Site the solar glint is reflected from.

6.200. **Appendix Q** shows Google Earth images that give an insight into how each receptor will be impacted by the glint and glare from the Principal Site. There is a mixture of images used, which include aerial, ground level and street level. The aerial images show the location of the receptor with the solar farm drawn as a white polygon and can be seen on the images when the solar

farm is theoretically visible, as well as the field of view of a train driver drawn between two red lines. The area of the solar farm from where reflections may be possible has been drawn as a yellow or green polygon. The ground level terrain is based on the height data of the surrounding land showing no intervening vegetation or buildings. The white and yellow polygons can be seen in this view also. The street view gives a good indication as to whether the area of the solar farm where reflections are theoretically possible will be visible from the receptor point.

### Receptor 1

- 6.201. The 'Glint and Glare' chart in **Appendix H - J** shows that reflections from the northeast half of Panel Area 1, all, except a small southern corner, of Panel Area 2, the eastern half of Panel Area 3, a northeast section of Panel Area 4, all of Panel Area 6, all of Panel Area 12 and a northeast section of Panel Area 14 (see **Figure 6 Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.202. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, the field of view (FOV) of a train driver (red lines) and the location from which the second image was taken (red dot). The second image is street view image with a view west towards the receptor. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible and the areas of the Principal Site where glint and glare is possible is outside the driver's field of view. Therefore, the impact reduces to **None**.

### Receptor 2

- 6.203. The 'Glint and Glare' chart in **Appendix H - J** shows that reflections from the northeast half of Panel Area 1, all, except a southwest section, of Panel Area 2, and eastern section of Panel Area 4 and the northern half and a southern section of Panel Area 12 (see **Figure 6 Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.204. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, the field of view (FOV) of a train driver (red lines) and the location from which the second image was taken (red dot). The second image is street view image with a view west towards the receptor. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible and the areas of the Principal Site where glint and glare is possible is outside the driver's field of view. Therefore, the impact reduces to **None**.

### Receptor 3

- 6.205. The 'Glint and Glare' chart in **Appendix H - J** shows that reflections from a northern section of Panel Area 1, all, except a southern section, of Panel Area 2, the northern half and a southern section of Panel Area 6 and the southern half and a northern section of

Panel Area 12 (see **Figure 6 Appendix A**) of the Principal Site can potentially impact on the receptor.

6.206. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, the field of view (FOV) of a train driver (red lines) and the location from which the second image was taken (red dot). The second image is street view image with a view west towards the receptor. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible and the areas of the Principal Site where glint and glare is possible is outside the driver's field of view. Therefore, the impact reduces to **None**.

#### Receptor 4

6.207. The 'Glint Reflections on PV Footprint' chart in **Appendix H - J** shows that reflections from a northern section of Panel Area 1, the northern half of Panel Area 2, a northern and a southern section of Panel Area 5 and all of Panel Area 12 (see **Figure 6 Appendix A**) of the Principal Site can potentially impact on the receptor.

6.208. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, the field of view (FOV) of a train driver (red lines) and the location from which the second image was taken (red dot). The second image is street view image with a view west towards the receptor. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible and the areas of the Principal Site where glint and glare is possible is outside the driver's field of view. Therefore, the impact reduces to **None**.

#### Receptor 5

6.209. The 'Glint Reflections on PV Footprint' chart in **Appendix H - J** shows that reflections from a northern section of Panel Area 1, a northern section of Panel Area 2, a northern and southern section of Panel Area 5 and all of Panel Area 12 (see **Figure 6 Appendix A**) of the Principal Site can potentially impact on the receptor.

6.210. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, the field of view (FOV) of a train driver (red lines) and the location from which the second image was taken (red dot). The second image is street view image with a view northwest towards the receptor. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible and the areas of the Principal Site where glint and glare is possible is outside the driver's field of view. Therefore, the impact reduces to **None**.

### Receptor 6

6.211. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix H - J** shows that reflections from a northern section of Panel Area 2, the southern half section of Panel Area 5 and all of Panel Area 12 (see **Figure 6 Appendix A**) of the Principal Site can potentially impact on the receptor.

6.212. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, the field of view (FOV) of a train driver (red lines) and the location from which the second image was taken (red dot). The second image is street view image with a view west towards the receptor. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible and the areas of the Principal Site where glint and glare is possible is outside the driver's field of view. Therefore, the impact reduces to **None**.

### Receptor 7

6.213. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix H - J** shows that reflections from a small northern section and small northeast corner of Panel Area 2, a western section of Panel Area 5 and all, except a small southwest corner, of Panel Area 12 (see **Figure 6 Appendix A**) of the Principal Site can potentially impact on the receptor.

6.214. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, the field of view (FOV) of a train driver (red lines) and the location from which the second image was taken (red dot). The second image is street view image with a view west towards the receptor. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible and the areas of the Principal Site where glint and glare is possible is outside the driver's field of view. Therefore, the impact reduces to **None**.

### Receptor 8

6.215. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix H - J** shows that reflections from all of Panel Area 5 and a northeast section of Panel Area 12 (see **Figure 6 Appendix A**) of the Principal Site can potentially impact on the receptor.

6.216. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, the field of view (FOV) of a train driver (red lines) and the location from which the second image was taken (red dot). The second image is street view image with a view southeast towards the Principal Site. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible and the areas of the Principal Site where glint and glare is possible is outside the driver's field of view. Therefore, the impact reduces to **None**.

### Receptor 9

- 6.217. The 'Glint and Glare' chart in **Appendix H - J** shows that reflections from all, except an eastern section of Panel, Area 4 and a western section, a northern section and a southern section of Panel Area 5 (see **Figure 6 Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.218. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, the field of view (FOV) of a train driver (red lines) and the location from which the second image was taken (red dot). The second image is street view image with a view southeast towards the Principal Site. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible and the areas of the Principal Site where glint and glare is possible is outside the driver's field of view. Therefore, the impact reduces to **None**.

### Receptor 10

- 6.219. The 'Glint and Glare' chart in **Appendix H - J** shows that reflections from all, except a southern section, of Panel Area 4 and all of Panel Area 5 (see **Figure 6 Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.220. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, the field of view (FOV) of a train driver (red lines) and the location from which the second image was taken (red dot). The second image is street view image with a view southeast towards the Principal Site. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible and the areas of the Principal Site where glint and glare is possible is outside the driver's field of view. Therefore, the impact reduces to **None**.

### Receptor 11

- 6.221. The 'Glint and Glare' chart in **Appendix H - J** shows that reflections from all of Panel Area 4 (see **Figure 6 Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.222. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, the field of view (FOV) of a train driver (red lines) and the location from which the second image was taken (red dot). The second image is street view image with a view south towards the Principal Site. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible and the areas of the Principal Site where glint and glare is possible is outside the driver's field of view. Therefore, the impact reduces to **None**.

### Receptor 12

6.223. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix H - J** shows that reflections from all, except a western section, of Panel Area 4 (see **Figure 6 Appendix A**) of the Principal Site can potentially impact on the receptor.

6.224. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, the field of view (FOV) of a train driver (red lines) and the location from which the second image was taken (red dot). The second image is street view image with a view northwest towards the receptor. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible and the areas of the Principal Site where glint and glare is possible is outside the driver's field of view. Therefore, the impact reduces to **None**.

### Receptor 13

6.225. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix H - J** shows that reflections from all, except a western section, of Panel Area 4 (see **Figure 6 Appendix A**) of the Principal Site can potentially impact on the receptor.

6.226. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, the field of view (FOV) of a train driver (red lines) and the location from which the second image was taken (red dot). The second image is street view image with a view northwest towards the receptor. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible and the areas of the Principal Site where glint and glare is possible is outside the driver's field of view. Therefore, the impact reduces to **None**.

## Bridleway Receptors

6.227. **Table 2020** shows a summary of the modelling results for each of the Bridleway Receptor Points whilst the detailed results and ocular impact charts can be viewed in **Appendix K, L and M**.

6.228. **Appendix K** shows the analysis for a tilt angle of 5 degrees, **Appendix L** shows the analysis for a tilt angle of 45 degrees and **Appendix M** shows the analysis for the tracker panels.

6.229. The three receptors (80 - 82) within the no-reflection zones outlined previously has been excluded from the detailed modelling as they will never receive glint and glare impacts from the Proposed Development.

**Table 2020: Summary of Bridleway Glare Results**

| Receptor | Green Glare (mins per year) | Yellow Glare (mins per year) | Red Glare (mins per year) | Magnitude of Impact | Worst Case Tilt Angle (degrees) |
|----------|-----------------------------|------------------------------|---------------------------|---------------------|---------------------------------|
| 1        | 1780                        | 979                          | 0                         | High                | 45                              |
| 2        | 4860                        | 2310                         | 0                         | High                | 5                               |
| 3        | 3673                        | 22344                        | 0                         | High                | 5                               |
| 4        | 6404                        | 17358                        | 0                         | High                | 45                              |
| 5        | 6196                        | 12364                        | 0                         | High                | 45                              |
| 6        | 4928                        | 5219                         | 0                         | High                | 5                               |
| 7        | 1456                        | 12                           | 0                         | High                | Tracker                         |
| 8        | 1910                        | 9                            | 0                         | High                | Tracker                         |
| 9        | 4178                        | 1086                         | 0                         | High                | Tracker                         |
| 10       | 2781                        | 2096                         | 0                         | High                | 5                               |
| 11       | 3144                        | 1856                         | 0                         | High                | 5                               |
| 12       | 4353                        | 41                           | 0                         | High                | Tracker                         |
| 13       | 7879                        | 871                          | 0                         | High                | Tracker                         |
| 14       | 140082                      | 53098                        | 0                         | High                | 5                               |
| 15       | 146795                      | 53668                        | 0                         | High                | 5                               |
| 16       | 6476                        | 14277                        | 0                         | High                | 5                               |
| 17       | 9502                        | 2864                         | 0                         | High                | Tracker                         |
| 18       | 9012                        | 2293                         | 0                         | High                | Tracker                         |
| 19       | 3817                        | 1736                         | 0                         | High                | 5                               |
| 20       | 8593                        | 2813                         | 0                         | High                | Tracker                         |
| 21       | 8166                        | 1790                         | 0                         | High                | Tracker                         |
| 22       | 8092                        | 376                          | 0                         | High                | 45                              |
| 23       | 5318                        | 0                            | 0                         | Low                 | 45                              |
| 24       | 6365                        | 82                           | 0                         | High                | 45                              |
| 25       | 7746                        | 1611                         | 0                         | High                | 45                              |

| Receptor | Green Glare (mins per year) | Yellow Glare (mins per year) | Red Glare (mins per year) | Magnitude of Impact | Worst Case Tilt Angle (degrees) |
|----------|-----------------------------|------------------------------|---------------------------|---------------------|---------------------------------|
| 26       | 7415                        | 2567                         | 0                         | High                | 45                              |
| 27       | 8883                        | 12416                        | 0                         | High                | 5                               |
| 28       | 9217                        | 9409                         | 0                         | High                | 5                               |
| 29       | 27408                       | 22260                        | 0                         | High                | 5                               |
| 30       | 172091                      | 41452                        | 0                         | High                | 5                               |
| 31       | 15961                       | 11205                        | 0                         | High                | 5                               |
| 32       | 3556                        | 1952                         | 0                         | High                | 5                               |
| 33       | 5351                        | 1673                         | 0                         | High                | 45                              |
| 34       | 5768                        | 2916                         | 0                         | High                | 45                              |
| 35       | 6399                        | 13332                        | 0                         | High                | 45                              |
| 36       | 7900                        | 7965                         | 0                         | High                | 45                              |
| 37       | 6164                        | 17731                        | 0                         | High                | 45                              |
| 38       | 9049                        | 12912                        | 0                         | High                | 45                              |
| 39       | 5526                        | 2079                         | 0                         | High                | 5                               |
| 40       | 7808                        | 388                          | 0                         | High                | 45                              |
| 41       | 3233                        | 0                            | 0                         | Low                 | 45                              |
| 42       | 2294                        | 0                            | 0                         | Low                 | 45                              |
| 43       | 1311                        | 0                            | 0                         | Low                 | 5                               |
| 44       | 3998                        | 0                            | 0                         | Low                 | 5                               |
| 45       | 5887                        | 361                          | 0                         | High                | 5                               |
| 46       | 6058                        | 212                          | 0                         | High                | 5                               |
| 47       | 7184                        | 0                            | 0                         | Low                 | 45                              |
| 48       | 13021                       | 5509                         | 0                         | High                | 5                               |
| 49       | 6376                        | 279                          | 0                         | High                | 5                               |
| 50       | 6467                        | 8                            | 0                         | High                | 5                               |

| Receptor | Green Glare (mins per year) | Yellow Glare (mins per year) | Red Glare (mins per year) | Magnitude of Impact | Worst Case Tilt Angle (degrees) |
|----------|-----------------------------|------------------------------|---------------------------|---------------------|---------------------------------|
| 51       | 7841                        | 0                            | 0                         | Low                 | 45                              |
| 52       | 9172                        | 0                            | 0                         | Low                 | 45                              |
| 53       | 10070                       | 0                            | 0                         | Low                 | 5                               |
| 54       | 11588                       | 556                          | 0                         | High                | 45                              |
| 55       | 12778                       | 857                          | 0                         | High                | 45                              |
| 56       | 72352                       | 53766                        | 0                         | High                | 5                               |
| 57       | 25941                       | 52959                        | 0                         | High                | 5                               |
| 58       | 7659                        | 3400                         | 0                         | High                | 5                               |
| 59       | 7939                        | 7752                         | 0                         | High                | 5                               |
| 60       | 4930                        | 3211                         | 0                         | High                | 5                               |
| 61       | 4741                        | 43                           | 0                         | High                | 45                              |
| 62       | 5803                        | 1370                         | 0                         | High                | 45                              |
| 63       | 3517                        | 666                          | 0                         | High                | 45                              |
| 64       | 5699                        | 1091                         | 0                         | High                | 45                              |
| 65       | 9451                        | 3002                         | 0                         | High                | 5                               |
| 66       | 8840                        | 5086                         | 0                         | High                | 5                               |
| 67       | 82353                       | 50698                        | 0                         | High                | 5                               |
| 68       | 3505                        | 34948                        | 0                         | High                | 5                               |
| 69       | 23915                       | 45953                        | 0                         | High                | 5                               |
| 70       | 4160                        | 1434                         | 0                         | High                | 45                              |
| 71       | 2578                        | 873                          | 0                         | High                | 5                               |
| 72       | 6714                        | 1105                         | 0                         | High                | 5                               |
| 73       | 8672                        | 0                            | 0                         | Low                 | 5                               |
| 74       | 7243                        | 0                            | 0                         | Low                 | 5                               |
| 75       | 5655                        | 0                            | 0                         | Low                 | 5                               |

| Receptor | Green Glare (mins per year) | Yellow Glare (mins per year) | Red Glare (mins per year) | Magnitude of Impact | Worst Case Tilt Angle (degrees) |
|----------|-----------------------------|------------------------------|---------------------------|---------------------|---------------------------------|
| 76       | 1946                        | 0                            | 0                         | Low                 | 5                               |
| 77       | 1389                        | 0                            | 0                         | Low                 | 5                               |
| 78       | 2869                        | 408                          | 0                         | High                | 5                               |
| 79       | 2623                        | 8                            | 0                         | High                | 5                               |

6.230. As can be seen in **Table 2020**, there are 65 receptor points which have potential glare impacts with the “potential for after-image” (Yellow Glare), which is a **High** impact, and 14 receptor points which have potential glare impacts with the “low potential for after-image” (Green Glare), which is a **Low** impact. **Appendix K - M** show detailed analysis of when the glint and glare impacts are possible, whilst also showing from which parts of the Principal Site the solar glint is reflected from.

6.231. **Appendix Q** shows Google Earth images that give an insight into how each receptor will be impacted by the glint and glare from the Principal Site. There is a mixture of images used, which include aerial, ground level and street level. The aerial images show the location of the receptor with the solar farm drawn as a white polygon and can be seen on the images when the solar farm is theoretically visible, as well as the field of view of a train driver drawn between two red lines. The area of the solar farm from where reflections may be possible has been drawn as a yellow or green polygon. The ground level terrain is based on the height data of the surrounding land showing no intervening vegetation or buildings. The white and yellow polygons can be seen in this view also. The street view gives a good indication as to whether the area of the solar farm where reflections are theoretically possible will be visible from the receptor point. Also, where appropriate images that have been taken from within the Application Site have been used to show up to date imagery.

### Receptor 1

6.232. The ‘Glare Reflections on PV Footprint’ chart in **Appendix K – M** shows that reflections from the northern half of the Panel Area 2, a northeast section of Panel Area 4, a southern section of Panel Area 6 and all of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.233. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second image is a ground level image taken from the position of the receptor a view towards the Principal Site. This image confirms that the vegetation and topography are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

## Receptor 2

- 6.234. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a small northern section of the Panel Area 1, all, except a southern section, of Panel Area 2, all, except a central and an eastern section, of Panel Area 4, a northern and southern section of Panel Area 5 and all of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.235. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are ground level images taken from the position of the receptor views eastwards and westwards respectively towards the Principal Site. These images confirm that the vegetation and topography are sufficient to screen all eastwards views of the Principal Site and insufficient to screen westward views of the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

## Receptor 3

- 6.236. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a northern section of the Panel Area 1, all, except a northwest and southwest section, of Panel Area 2, the northern half of Panel Area 5 and all of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.237. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are ground level images taken from the position of the receptor views eastwards and westwards respectively towards the Principal Site. These images confirm that the vegetation and topography are insufficient to screen views of Panel Area 1 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

## Receptor 4

- 6.238. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from two northern sections of the Panel Area 1, all, except a northern section, of Panel Area 2, an eastern section of Panel Area 4, the northern half of Panel Area 5 and all of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.239. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are ground level images taken from the position of the receptor views eastwards and westwards respectively towards the Principal Site. These images confirm that the vegetation and topography are views of Panel Area 1 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 5

- 6.240. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from two central sections of the Panel Area 1, the southern half of Panel Area 2, the northern half of Panel Area 4, all, except a northern and a southern section, of Panel Area 5 and all of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.241. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are ground level images taken from the position of the receptor views eastwards and westwards respectively towards the Principal Site. These images confirm that the vegetation and topography are views of Panel Area 1 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 6

- 6.242. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from two central sections of the Panel Area 1, a southern section of Panel Area 2, all, except a two southern sections of Panel Area 4, all, except a southern section, of Panel Area 5 and all of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.243. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are ground level images taken from the position of the receptor with views eastwards and westwards respectively towards the Principal Site. These images confirm that the vegetation and topography are insufficient to screen views of Panel Area 1 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 7

- 6.244. The 'Glint and Glare' chart in **Appendix M** shows that reflections from the eastern half of Panel Area 4 and the northern half of Panel Area 5 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.245. The first image in **Appendix N** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second image is a ground level image taken from the position with a view towards the Principal Site. This image confirms that the vegetation and topography are sufficient to screen views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 8

- 6.246. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from the eastern half and a small northern section of Panel Area 2, all, except a western section, of Panel

Area 4 and all, except a southern corner of Panel Area 5 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.247. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are a ground level image taken from the position of the receptor with views southwards and westwards respectively towards the Principal Site. This image confirms that the vegetation and topography are insufficient to screen views of Panel Area 2 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

#### Receptor 9

6.248. The 'Glint Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from an eastern and a northwest section of Panel Area 2, the eastern half of Panel Area 4 and all, except a southern section of Panel Area 5 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.249. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are ground level images taken from the position of the receptor with views south eastwards and westwards respectively towards the Principal Site. These images confirm that the vegetation and topography are insufficient to screen views of Panel Area 2 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

#### Receptor 10

6.250. The 'Glint Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from a northeast and northwest section of Panel Area 2, the eastern half and a western section of Panel Area 4 and all, except a southern section, of Panel Area 5 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.251. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are ground level images taken from the position of the receptor with views south eastwards and westwards respectively towards the Principal Site. These images confirm that the vegetation and topography are insufficient to screen views of Panel Area 2 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

#### Receptor 11

6.252. The 'Glint Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from a northeast corner and northwest section of Panel Area 2, an eastern and a western section of Panel Area 4 and all, except a southern and western section, of Panel Area 5 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.253. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are a ground level images taken from the position of the receptor with views south eastwards and westwards respectively towards the Principal Site. This image confirms that the vegetation and topography are insufficient to screen views of the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 12

6.254. The 'Glint Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from the northern half of Panel Area 2, an eastern and western section of Panel Area 4 and a western corner of Panel Area 5 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.255. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second, third and fourth images are ground level images taken from the position of the receptor with views westwards (second and third images) and southwards (fourth images) respectively towards the Principal Site. These images confirms that the vegetation and topography are insufficient to screen views of Panel Area 2 in the Principal Site where glint and glare is possible. The second and third images are ground level images taken from the position of the receptor with a westwards view towards the Principal Site showing the position of the sun at 16:30 UTC on October 15<sup>th</sup> and at 15:30 UTC on November 30<sup>th</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. Therefore, the impact reduces to **Low**.

### Receptor 13

6.256. The 'Glint Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from a central section of Panel Area 2, a central, eastern and western section of Panel Area 4 and a northern section of Panel Area 5 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.257. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second, third and fourth images are ground level images taken from the position of the receptor with views westwards (second and third images) and southwards (fourth images) respectively towards the Principal Site. These images confirms that the vegetation and topography are insufficient to screen views of Panel Areas 2 and 4 in the Principal Site where glint and glare is possible. The second and third images are ground level images taken from the position of the receptor with a westwards view towards the Principal Site showing the position of the sun at 15:30 UTC on January 1<sup>st</sup> and at 17:00 UTC on October 5<sup>th</sup> respectively. The fourth image is a ground level image taken from the position of

the receptor with a southwards view towards the Principal Site showing the position of the sun at 12:00 UTC on January 1<sup>st</sup>. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. Therefore, the impact reduces to **Low**.

#### Receptor 14

- 6.258. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from northern sections of Panel Area 2, the eastern half and a western section of Panel Area 4 and all, except a southern section, of Panel Area 5 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.259. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second, third and fourth images are ground level images taken from the position of the receptor with views eastwards, westwards and southwards respectively towards the Principal Site. These images confirm that the vegetation and topography are insufficient to screen views of Panel Area 2 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

#### Receptor 15

- 6.260. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from eastern and western sections of Panel Area 2, the eastern half and a western section of Panel Area 4 and the northern half of Panel Area 5 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.261. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second, third and fourth images are ground level images taken from the position of the receptor with views eastwards, westwards and southwards respectively towards the Principal Site. These images confirm that the vegetation and topography are insufficient to screen views of the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

#### Receptor 16

- 6.262. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from an eastern and two western sections of Panel Area 2 and the eastern half and a western section of Panel Area 4 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.263. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second, third and fourth images are Google Earth Photos taken from the position of the receptor with views eastwards, westwards and

southwards respectively towards the Principal Site. These images confirm that the vegetation and topography are insufficient to screen views of the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 17

6.264. The 'Glint and Glare on PV Footprint' chart in **Appendix K – M** shows that reflections from all, except a western section, of Panel Area 2, an eastern and a western section of Panel Area 4 and all of Panel Area 5 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.265. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second image is a ground level image taken from the position of the receptor with a westwards view towards the Principal Site showing the position of the sun at 17:30 UTC on March 1<sup>st</sup>. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glint impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. The third image is a street view image taken from the position of the receptor with a view southward towards the Principal Site. These images confirm that the vegetation and topography are sufficient to screen views of Panel Areas 4 and 5 in the Principal Site where glint and glare is possible. Therefore, the impact reduces to **Low**.

### Receptor 18

6.266. The 'Glint and Glare on PV Footprint' chart in **Appendix K – M** shows that reflections from all, except a central section, of Panel Area 2, an eastern section and a western corner of Panel Area 4 and all, except an eastern section, of Panel Area 5 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.267. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second, third, fourth and fifth images are ground level images taken from the position of the receptor with views westwards (second and third images) and southwards (fourth images) respectively towards the Principal Site. These images confirm that the vegetation and topography are insufficient to screen views of Panel Area 2 in the Principal Site where glint and glare is possible. The second and third images are ground level images taken from the position of the receptor with a westwards view towards the Principal Site showing the position of the sun at 17:45 UTC on March 20<sup>th</sup> and at 17:30 UTC on April 15<sup>th</sup> respectively. The fourth and fifth images are ground level images taken from the position of the receptor with a southwards view towards the Principal Site showing the position of the sun at 12:15 UTC on January 1<sup>st</sup> and at 12:00 UTC on December 5<sup>th</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glint impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar

array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. Therefore, the impact reduces to **Low**.

### Receptor 19

- 6.268. The 'Glare Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from a northern, a central and a southern section of Panel Area 2, two eastern sections and a wester corner of Panel Area 3 and a western section of Panel Area 5 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.269. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second, third, fourth, fifth and sixth images are ground level images taken from the position of the receptor with views westwards (second, third and fourth images) and southwards (fifth and sixth images) respectively towards the Principal Site. The second, third and fourth images are ground level images taken from the position of the receptor with a westwards view towards the Principal Site showing the position of the sun at 17:45 UTC on March 15<sup>th</sup>, at 17:00 UTC on May 5<sup>th</sup> and at 17:15 UTC on October 1<sup>st</sup> respectively. The fifth and sixth images are ground level images taken from the position of the receptor with a southwards view towards the Principal Site showing the position of the sun at 09:15 UTC on January 1<sup>st</sup> and at 12:15 UTC on December 5<sup>th</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. Therefore, the impact reduces to **Low**.

### Receptor 20

- 6.270. The 'Glare Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from all, except a northern and a southern section, of Panel Area 2, an eastern and a western section of Panel Area 4 and all, except an eastern section of Panel Area 5 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.271. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second, third, fourth, fifth, sixth and seventh images are ground level images taken from the position of the receptor with views westwards (second and third images) and southwards (fourth, fifth, sixth and seventh images) respectively towards the Principal Site. The second and third images are ground level images taken from the position of the receptor with a westwards view towards the Principal Site showing the position of the sun at 17:45 UTC on March 20<sup>th</sup> and at 17:15 UTC on April 20<sup>th</sup> respectively. The fourth, fifth, sixth and seventh images are ground level images taken from the position of the receptor with a southwards view towards the Principal Site showing the position of the sun at 11:45 UTC on January 1<sup>st</sup>, at 13:00 UTC on December 1<sup>st</sup>, at 14:45 UTC on January 1st and at 14:30 UTC on December 1<sup>st</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far

greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. Therefore, the impact reduces to **Low**.

## Receptor 21

6.272. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from all, except a northern and a southern section, of Panel Area 2, a northern section and eastern section of Panel Area 4 and all of Panel Area 6 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.273. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). The second image is a street view image with a view towards Panel Area 2. This image confirms that the vegetation is sufficient to screen all views of Panel Area 2 in the Principal Site where glint and glare is possible. The third, fourth, fifth, and sixth images are ground level images taken from the position of the receptor with views southwards towards the Principal Site showing the position of the sun at 11:30 UTC on January 5<sup>th</sup>, at 12:45 UTC on December 1<sup>st</sup>, at 14:45 UTC on January 1<sup>st</sup> and at 15:45 UTC on February 1<sup>st</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. Therefore, the impact reduces to **Low**.

## Receptor 22

6.274. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a southern section of Panel Area 1, a southern section, of Panel Area 2, all, except a southern section of Panel Area 3, all, except a southern section, of Panel Area 4, all, except a southern section, of Panel Area 5, a northern section of Panel Area 6 and all of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.275. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are ground level images taken from the position of the receptor with a westwards view towards the Principal Site showing the position of the sun at 06:45 UTC on April 1<sup>st</sup> and at 07:15 UTC on August 15<sup>th</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. The fourth image is a ground level image taken from the position of the receptor with a view southwards respectively towards the Principal Site. These images confirm that the topography is insufficient to screen views of Panel Area 12 in the Principal Site where glint and glare is possible. Therefore, the impact reduces to **Low**.

## Receptor 23

6.276. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a southern section of Panel Area 1, a southern section, of Panel Area 2, all, except a southern section of Panel Area 3, all, except a southern section, of Panel Area 4, all, except a southern section, of Panel Area 5, a northern section of Panel Area 6 and all of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.277. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are ground level images taken from the position of the receptor with a westwards view towards the Principal Site showing the position of the sun at 06:30 UTC on April 1<sup>st</sup> and at 07:00 UTC on May 15<sup>th</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. The fourth image is a ground level image taken from the position of the receptor with a view southwards respectively towards the Principal Site. These images confirm that the topography is insufficient to screen views of Panel Area 12 in the Principal Site where glint and glare is possible. Therefore, the impact reduces to **Low**.

## Receptor 24

6.278. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a southern section of Panel Area 1, a northern section, of Panel Area 3, all, except a southern section, of Panel Area 4, the northern half of Panel Area 5, a northern section of Panel Area 6 and all of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.279. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are ground level images taken from the position of the receptor with a westwards view towards the Principal Site showing the position of the sun at 06:30 UTC on April 1<sup>st</sup> and at 07:00 UTC on May 15<sup>th</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. The fourth image is a ground level image taken from the position of the receptor with a view southwards respectively towards the Principal Site. These images confirm that the topography is insufficient to screen views of Panel Area 12 in the Principal Site where glint and glare is possible. Therefore, the impact reduces to **Low**.

## Receptor 25

6.280. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a small southern section of Panel Area 1, a northern section of Panel Area 3, all, except a southern section, of Panel Area 4, the northern half of Panel Area 5, a northern section of Panel Area 6 and all of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.281. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are ground level images taken from the position of the receptor with a view towards Panel Area 1 in the Principal Site showing the position of the sun at 05:00 UTC on May 15th and July 1<sup>st</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. The fourth images is a ground level image taken from the position of the receptor with a view southwards towards the Principal Site. This image confirms that the topography is sufficient to screen views of Panel Areas 3, 4, 5, 6 and 8 in the Principal Site where glint and glare is possible. Therefore, the impact reduces to **Low**.

## Receptor 26

6.282. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from an eastern and small southern section of Panel Area 1, a northern section of Panel Area 3, all, except a southern section, of Panel Area 4, the northern half of Panel Area 5, a northern section of Panel Area 6 and all of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.283. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second image is a ground level images taken from the position of the receptor with a view northward towards the Principal Site. This image confirms that the topography is insufficient to screen views of Panel Area 1 in the Principal Site where glint and glare is possible. The third and third fourth are ground level images taken from the position of the receptor with a view towards Panel Areas 3, 4 and 5 in the Principal Site showing the position of the sun at 06:30 UTC on April 1<sup>st</sup> and at 07:00 UTC on July 1<sup>st</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. The fifth image is a ground level image with a view southward. This image confirms that the topography is sufficient to screen views of Panel Areas 5, 6 and 12 in the Principal Site where glint and glare is possible. Therefore, the impact remains **Low**.

## Receptor 27

6.284. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a southern section of Panel Area 1, a northern section of Panel Area 3, a northern section of Panel Area 5, a northeast section of Panel Area 6 and all of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.285. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second image is a ground level image with an eastwards view towards the Principal Site. This image confirms that the topography is insufficient to screen all view of Panel Area 3 in the Principal Site where glint and glare is possible. The third and fourth images are ground level images taken from the position of the receptor with a view towards Panel Area 1 in the Principal Site showing the position of the sun at 19:00 UTC on July 1<sup>st</sup> and at 17:00 UTC on October 1<sup>st</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. The fifth image is a ground level image taken from the position of the receptor with a southwards view towards Panel Areas 5, 6 and 12 in the Principal Site. These images confirm that the topography is sufficient to screen views of Panel Areas 5, 6, 8 and 10 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

## Receptor 28

6.286. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a western section of Panel Area 1, a northern section of Panel Area 3, all, except a southern section, of Panel Area 4, all, except a southern section, of Panel Area 11 and all of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.287. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second image is ground level image taken from the position of the receptor with a view towards Panel Areas 3 and 4 in the Principal Site. This image confirms that the topography is insufficient to screen views of the Principal Site where glint and glare is possible. The third image is a ground level image taken from the position of the receptor with westwards view towards Panel Area 1 in the Principal Site. This image confirms that the topography is insufficient to screen views of Panel Area 1 in the Principal Site where glint and glare is possible. The fourth image is a ground level image with a southwards view towards Panel Areas 11 and 12 in the Principal Site. This image confirms that the topography is sufficient to screen all views of Panel Areas 11 and 12 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 29

6.288. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a central section of Panel Area 1, a northern section of Panel Area 3, the northern half of Panel Area 4, all, except a southern section, of Panel Area 11 and all of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.289. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are ground level images taken from the position of the receptor with a view towards Panel Area 3 and 4 in the Principal Site showing the position of the sun at 07:00 UTC on March 15<sup>th</sup> and at 05:30 UTC on May 10<sup>th</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. The fourth image is a ground level image taken from the position of the receptor with westwards view towards Panel Area 1 in the Principal Site. This image confirms that the topography is insufficient to screen views of Panel Area 1 in the Principal Site where glint and glare is possible. The fifth image is a ground level image with a southwards view towards Panel Areas 11 and 12 in the Principal Site. This image confirms that the topography is sufficient to screen all views of Panel Areas 11 and 12 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 30

6.290. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from an eastern and western section of Panel Area 1, a southern section of Panel Area 2, a northern section of Panel Area 3, the northern half of Panel Area 4, all, except a southern section, of Panel Area 11 and all of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.291. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are ground level images taken from the position of the receptor with views eastwards and westwards respectively towards the Principal Site. These images confirm that the topography is insufficient to screen views of Panel Areas 1, 2, 3 and 4 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 31

6.292. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from the northern half of Panel Area 1, a southern section of Panel Area 2, an eastern section of Panel Area 3, the northern half of Panel Area 4, all, except a central section, of Panel Area 5 the northeast half of Panel Area 11 and all, except a southwest section, of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.293. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are ground level images taken from the position of the receptor with views eastwards and westwards respectively towards the Principal Site. These images confirm that the topography is insufficient to screen views of Panel Areas 1, 3 and 4 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 32

6.294. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a northern section of Panel Area 1, a southern section of Panel Area 2, a northeast section of Panel Area 3, a northeast section of Panel Area 4, a northeast section of Panel Area 11 and a northeast section of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.295. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second, third and fourth images are ground level images taken from the position of the receptor with views eastwards, southwards and westwards respectively towards the Principal Site. These images confirm that the topography is insufficient to screen views of Panel Areas 2, 3 and 4 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 33

6.296. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a northern section of Panel Area 1, a southern section of Panel Area 2, a northern and a southern section of Panel Area 5 and a small northeast corner of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.297. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second, third and fourth images are ground level images taken from the position of the receptor with views eastwards, southwards and westwards respectively towards the Principal Site. These images confirm that the topography is insufficient to screen views of Panel Area 2 in the Principal Site where glint and glare is possible. Therefore, the impact reduces to **Low**.

### Receptor 34

6.298. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from the northern half of Panel Area 1, the northern half of Panel Area 4, all, except a central section, of Panel Area 5 and all of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.299. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are ground level images taken

from the position of the receptor with views eastwards and westwards respectively towards the Principal Site. These images confirm that the topography is insufficient to screen views of Panel Areas 1 and 4 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 35

- 6.300. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a northern section of Panel Area 1, two northern sections of Panel Area 3, the northern half of Panel Area 4, all, except a northern and a southern section, of Panel Area 5 and a small northeast corner of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.301. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are ground level images taken from the position of the receptor with views eastwards and westwards respectively towards the Principal Site. These images confirm that the topography is insufficient to screen views of Panel Areas 1, 3 and 4 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 36

- 6.302. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a northern section of Panel Area 1, a northern section of Panel Area 3, a central section of Panel Area 4, a central and a southern section of Panel Area 5 and a small northeast corner of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.303. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are ground level images taken from the position of the receptor with views eastwards and westwards respectively towards the Principal Site. These images confirm that the topography is insufficient to screen views of Panel Areas 1, 3 and 4 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 37

- 6.304. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from all, except a southern section, of Panel Area 1, a northern section of Panel Area 3, two southern sections of Panel Area 4, all, except two central sections, of Panel Area 5, a northeast section of Panel Area 11 and a small northeast corner of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.305. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are ground level images taken from the position of the receptor with views eastwards and westwards respectively towards

the Principal Site. These images confirm that the topography is insufficient to screen views of Panel Areas 1, 3 and 4 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 38

6.306. The 'Glint and Glare on PV Footprint' chart in **Appendix K – M** shows that reflections from all, except a northeast section, of Panel Area 1, a central section of Panel Area 3, two southern sections of Panel Area 4, the northeast half of Panel Area 11, and the northern half of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.307. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site. The second and third images are ground level images taken from the position of the receptor with views eastwards and westwards respectively towards the Principal Site. These images confirm that the topography is insufficient to screen views of Panel Areas 1, 3 and 4 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 39

6.308. The 'Glint and Glare on PV Footprint' chart in **Appendix K – M** shows that reflections from a southern and a western section of Panel Area 1, a western section of Panel Area 3, the southern half of Panel Area 5, all, except a southern section, of Panel Area 11 and all of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.309. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the locations from which the second and third images were taken (red and yellow dots respectively). The second image is a street view image with a view of the vegetation to the south of Panel Area 3. The third image is a street view image with a view towards the receptor. The fourth image is a ground level image taken from the position of the receptor with views eastwards towards the Principal Site. These images confirm that the vegetation and topography is sufficient to screen views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 40

6.310. The 'Glint and Glare on PV Footprint' chart in **Appendix K – M** shows that reflections from a western and southern section of Panel Area 1, a western section of Panel Area 3, a central section of Panel Area 6, and all of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.311. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the locations from which the second and third images were taken (red dot). The second image is a street view image with a view of the vegetation to the south of Panel Area 3. The third image is a street view image with a view towards the

receptor. The fourth image is a ground level image with an eastwards view towards the Principal Site. These images confirm that the vegetation and topography are sufficient to screen views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptor 41

- 6.312. The 'Glint Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from the southern half of Panel Area 5 and a central section of Panel Area 6 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.313. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). The second image is a street view image with a view towards the Principal Site. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptor 42

- 6.314. The 'Glint Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from a southern section of Panel Area 5, a central section of Panel Area 6 and all, except a northern section, of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.315. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). The second image is a street view image with a view towards the Principal Site. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptor 43

- 6.316. The 'Glint Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from a southern section of Panel Area 5 and all, except a northern section, of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.317. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). The second image is a street view image with a view towards the Principal Site. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 44

6.318. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from a southern section of Panel Area 5, a central section of Panel Area 7 and all of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.319. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). The second image is a street view image with a view towards the Principal Site. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 45

6.320. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from all, except an eastern section, of Panel Area 1, all, except an eastern section, of Panel Area 3, a central section of Panel Area 6 and a small northeast corner of Panel Area 12 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.321. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). The second image is a street view image with an eastwards view towards Panel Area 12 in the Principal Site. This image confirms that the vegetation is insufficient to screen all views of Panel Area 10 in the Principal Site where glint and glare is possible. The third and fourth images are ground level images taken from the position of the receptor with a westwards view towards Panel Areas 1, 3 and 6 in the Principal Site showing the position of the sun at 19:00 UTC on May 15<sup>th</sup> and at 19:30 UTC on July 1<sup>st</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. Therefore, the impact reduces to **Low**.

### Receptor 46

6.322. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from all of Panel Area 1, all, except an eastern section, of Panel Area 3 and all, except a southern section, of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.323. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red and yellow dots respectively). The second image is a street view image with a north westwards view towards Panel Areas 1 and 3 in the Principal Site. The third image is a street view image with a view towards the receptor. These images confirm that the vegetation

is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptor 47

- 6.324. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from all of Panel Area 1, all, except a northeast section, of Panel Area 3, a southwest corner of Panel Area 4 and all of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.325. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red and yellow dots respectively). The second image is a street view image with a north westwards view towards Panel Areas 1, 3 and 4 in the Principal Site. The third image is a street view image with a view towards the receptor. These images confirm that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptor 48

- 6.326. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from all, except a northeast section, of Panel Area 1, all, except an eastern section, of Panel Area 3, a central section of Panel Area 6, a northern section of Panel Area 7 and all of Panel Area 8 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.327. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken. The second image is a street view image with a view towards the Principal Site. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptor 49

- 6.328. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from all, except al northeast section, of Panel Area 1, all, except an eastern section, of Panel Area 3, a central section of Panel Area 6, a southern section of Panel Area 7 and all of Panel Area 8 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.329. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). The second image is a Google Earth photo with a view towards the Principal Site. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 50

- 6.330. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from all, except a northeast section, of Panel Area 1, all, except a northeast section, of Panel Area 3 and all of Panel Area 7 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.331. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the locations from which the second and third images were taken. The second image is a street view image with a westwards view towards Panel Areas 1 and 3 in the Principal Site. The third image is a street view image with a view towards the receptor. These images confirm that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 51

- 6.332. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from all of Panel Area 1, a small western section of Panel Area 2, all, except a northeast section, of Panel Area 3, a small southwest corner of Panel Area 4, all of Panel Area 7 and all, except a southeast corner, of Panel Area 8 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.333. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red and yellow dots respectively). The second image is a street view image with a north westwards view towards Panel Areas 1, 2, 3 and 4 in the Principal Site. The third image is a street view image with a view towards the receptor. These images confirm that the vegetation is sufficient to screen all views of the Principal Site where yellow glare is possible. Therefore, the impact reduces to **None**.

### Receptor 52

- 6.334. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from all of Panel Area 1, a western section of Panel Area 2, all of Panel Area 3, a southwest corner of Panel Area 4, all of Panel Area 7 and all of Panel Area 8 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.335. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red and yellow dots respectively). The second image is a street view image with a north westwards view towards Panel Areas 1, 2, 3 and 4 in the Principal Site. The third image is a street view image with a view towards the receptor. These images confirm that the vegetation is sufficient to screen all views of the Principal Site where yellow glare is possible. Therefore, the impact reduces to **None**.

### Receptor 53

6.336. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from all of Panel Area 1, a western section of Panel Area 2, all, except a northeast section, of Panel Area 3, a southwest corner of Panel Area 4, all, except a northeast corner, of Panel Area 6, all of Panel Area 7, all, except a southern section, of Panel Area 8, all, except a southern section of Panel Area 9, all of Panel Area 10, a northern section of Panel Area 11, all of Panel Area 13 and all of Panel Area 14 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.337. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red dot). The second image is a street view image with a westwards view of the vegetation to the west of the receptor and the third image is a street view image with a view towards Panel Areas 1, 2, 3, 4, 6 and 7 in the Principal Site. These images confirm that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 54

6.338. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from all, except two eastern sections, of Panel Area 1, all, except an eastern section, of Panel Area 3, all, except a northeast corner, of Panel Area 6, all of Panel Area 7, all of Panel Area 8, all of Panel Area 9, all of Panel Area 10, a northwest section of Panel Area 11, all of Panel Area 13 and all of Panel Area 14 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.339. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). The second image is a street view image with a view towards the receptor. This image confirms that the vegetation is sufficient to screen all views of Panel Areas 1, 3, 6, 7, 8, 9 and 10 in the Principal Site. The third image is a ground level image with a southwest view towards Panel Areas 11, 13 and 14 in the Principal Site. This image confirms that the topography is insufficient to screen all views of Panel Area 11 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 55

6.340. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from all, except an eastern section, of Panel Area 1, all, except an eastern section, of Panel Area 3, all, except a northern section, of Panel Area 6, all of Panel Area 7, all of Panel Area 8, all of Panel Area 9, all of Panel Area 10, a northwest section of Panel Area 11 and all of Panel Area 14 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.341. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). The second image is a street view image with a view towards the receptor. This image confirms that the vegetation is sufficient to screen all views of Panel Areas 1, 3, 6, 7, 8, 9, 10 and 14 in the Principal Site. The second image is a ground level image with a westwards view towards Panel Area 11 in the Principal Site. This image confirms that the topography is insufficient to screen all views of Panel Area 11 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 56

6.342. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from the western half of Panel Area 1, the western half of Panel Area 3, the southern half of Panel Area 6, all of Panel Area 7, all of Panel Area 8, all of Panel Area 9, a northern section of Panel Area 11, a northeast corner of Panel Area 12, all of Panel Area 13 and all of Panel Area 14 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.343. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red and yellow dots respectively). The second image is a street view image with a view towards Panel Areas 1, 3, 6, 7, 8, and 9 in the Principal Site. The third image is a street view image with a view towards the Receptor. The fourth image is a ground level image taken from the position of the receptor with a view towards Panel Areas 11 and 12 in the Principal Site. These images confirms that the vegetation is sufficient to screen all views of Panel Areas 1, 3, 6, 7, and 8 in the Principal Site and the topography is sufficient to screen all views of Panel Area 12 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 57

6.344. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a western and a southern section, of Panel Area 1, a western section of Panel Area 3, the southern half of Panel Area 6, all, except a northeast corner, of Panel Area 7, all of Panel Area 8, the southern half of Panel Area 9, two northern sections of Panel Area 11, the northern half of Panel Area 12, a northern section of Panel Area 13 and all of Panel Area 14 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.345. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red dot). The second and third images are street view images with westwards and eastwards views towards the Principal Site respectively. These images confirm that the vegetation is insufficient to screen all views of Panel Areas 9 and 11 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 58

6.346. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from a southern and a western section of Panel Area 1, a western section of Panel Area 3, a southern section of Panel Area 6, a southern section of Panel Area 7, all of Panel Area 8, a southern section of Panel Area 9, an eastern and a western section of Panel Area 11, all, except a southwest corner, of Panel Area 12 and all of Panel Area 14 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.347. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). The second image is a street view image with an eastwards view towards the receptor. This image confirms that the vegetation is sufficient to screen all views of Panel Areas 1, 3, 6, 7, 8, 9 and 14 in the Principal Site. The third image is a ground level image with an eastwards view towards the Principal Site. This image confirms that the topography is insufficient to screen all views of Panel Area 11 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 59

6.348. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from a western section of Panel Area 1, a western section of Panel Area 3, the southern half of Panel Area 6, a small southern section of Panel Area 7, all of Panel Area 8, an eastern section of Panel Area 11, the southern half of Panel Area 12, all, except a northern section, of Panel Area 13 and all of Panel Area 14 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.349. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). The second image is a street view image with a westwards view towards Panel Areas 1, 3, 6, 7, 8, 13 and 14 in the Principal Site. This image confirms that the vegetation is sufficient to screen all views of Panel Areas 1, 3, 6, 7, 8, 13 and 14 in the Principal Site. The third image is a ground level image with an eastwards view towards the Principal Site. This image confirms that the topography is insufficient to screen all views of Panel Area 11 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 60

6.350. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from a southern and a western section of Panel Area 1, a southern section of Panel Area 6, a southern section of Panel Area 8, an eastern section of Panel Area 11, a northern and southern section of Panel Area 12, all, except a northern section of Panel Area 13 and all of Panel Area 14 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.351. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). The second image is a street view image with an eastwards view towards the receptor. This image confirms that the vegetation is sufficient to screen all views of Panel Areas 1, 6, 8, 13 and 14 in the Principal Site. The third image is a ground level image with an eastwards view towards the Principal Site. This image confirms that the topography is insufficient to screen all views of Panel Area 11 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 61

6.352. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a western section of Panel Area 1, a western section of Panel Area 3, the southern half of Panel Area 6, the southern half of Panel Area 7, all of Panel Area 8, a small southern section of Panel Area 9, an eastern section of Panel Area 11, all of Panel Area 12 and all of Panel area 14 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.353. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). The second image is a street view image with a westwards view towards Panel Areas 1, 3, 6, 7 and 8 in the Principal Site. This image confirms that the vegetation is sufficient to screen all views of Panel Areas 1, 3, 6, 7 and 8 in the Principal Site. The third image is a ground level image with an eastwards view towards the Principal Site. This image confirms that the topography is insufficient to screen all views of Panel Area 11 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 62

6.354. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a western section of Panel Area 1, a western section of Panel Area 3, the southern half of Panel Area 6, the southern half of Panel Area 7, all of Panel Area 8, an eastern and a northern section of Panel Area 11, all of Panel Area 12, all, except a northern section, of Panel Area 13 and all of Panel Area 14 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.355. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). The second and third images are street view images with eastwards and westwards views towards the Principal Site respectively. These images confirm that the vegetation is sufficient to screen all views of Panel Areas 1, 3, 6, 7, 8, 13 and 14 in the Principal Site and insufficient to screen all views of Panel Area 11 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 63

6.356. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from all of Panel Area 8, a central section of Panel Area 11, all of Panel Area 12, a northern, all, except a northern section, of Panel Area 13, a northwest and southeast section of Panel Area 14 and the northwest half of Panel Area 15 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.357. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second, third and fourth images were taken (red, yellow and blue dots respectively). The second image is a street view image with an eastwards view towards Panel Area 11 and 12 in the Principal Site. The third image is a street view image with a northwards view towards Panel Area 8 in the Principal Site. The fourth image is a street view image with a northeast view towards the receptor. These images confirm that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 64

6.358. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from a southwest corner of Panel Area 8, a central and southern section of Panel Area 11, all of Panel Area 12 and a northwest and southeast section of Panel Area 14 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.359. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second, third and fourth images were taken (red, yellow and blue dots respectively). The second image is a street view image with an eastwards view towards Panel Area 11 and 12 in the Principal Site. The third image is a street view image with an north eastwards view towards the receptor. The fourth image is a street view image with a northwards view towards Panel Area 8 in the Principal Site. These images confirm that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 65

6.360. The 'Glint and Glare Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from all, except a northwest section, of Panel Area 11, all of Panel Area 12, a central section of Panel Area 13, a southeast section of Panel Area 14 and all, except a southern section, of Panel Area 15 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.361. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red and yellow dots respectively). The second image is a street view image with a westwards view towards the receptor. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of Panel Areas 11, 12, 14 and 15 in the Principal Site

where glint and glare is possible. The third image is a street view image with a westwards view towards Panel Area 13 in the Principal Site. This image confirms that the vegetation is insufficient to screen all views Panel Area 13 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 66

- 6.362. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from all, except a northwest section, of Panel Area 11, all of Panel Area 12, a central section of Panel Area 13, all of Panel Area 14 and all, except a southern section, of Panel Area 15 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.363. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red dot). The second image is a street view image with an eastwards view towards Panel Areas 11, 12 and 15. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of Panel Areas 11 and 12 in the Principal Site where glint and glare is possible. The third image is a street view image with a westwards view towards the receptor and Panel Area 13 in the Principal Site. This image confirms that the vegetation is insufficient to screen all views Panel Area 13, 14 and 15 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 67

- 6.364. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from all of Panel Area 11, all of Panel Area 12, a central section of Panel Area 13, all, except a southeast corner of Panel Area 14 and the northern half of Panel Area 15 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.365. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red dot). The second image is a street view image with an eastwards view towards Panel Areas 11, 12 and 15. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of Panel Areas 11 and 12 in the Principal Site where glint and glare is possible. The third image is a street view image with a westwards view towards the receptor and Panel Area 13 in the Principal Site. This image confirms that the vegetation is insufficient to screen all views Panel Area 13, 14 and 15 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 68

- 6.366. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a small southern corner of Panel Area 9, an eastern section of Panel Area 10, all of Panel Area 11, all of Panel Area 12, a central section of Panel Area 13, the northern half of Panel Area 14 and

the northern half of Panel Area 15 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.367. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red dot). The second image is a street view image with an eastwards view towards Panel Areas 9, 10, 11, 12 and 15. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of Panel Areas 9, 10, 11 and 12 in the Principal Site where glint and glare is possible. The third image is a street view image with a westwards view towards the receptor and Panel Area 13 in the Principal Site. This image confirms that the vegetation is insufficient to screen all views Panel Area 13, 14 and 15 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

#### Receptor 69

6.368. The 'Glint Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from the eastern half of Panel Area 9, all of Panel Area 10, all of Panel Area 11, all of Panel Area 12, a northern section of Panel Area 13, the northern half of Panel Area 14 and a northern section of Panel Area 15 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.369. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red dot). The second image is a street view image with an eastwards view towards Panel Areas 9, 10, 11, 12 and 15. This image confirms that the vegetation and intervening buildings are sufficient to screen all views of Panel Areas 9, 10, 11 and 12 in the Principal Site where glint and glare is possible. The third image is a street view image with a westwards view towards the receptor and Panel Area 13 in the Principal Site. This image confirms that the vegetation is insufficient to screen all views Panel Area 13, 14 and 15 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

#### Receptor 70

6.370. The 'Glint Reflections on PV Footprint' chart in **Appendix K – M** shows that reflections from the southeast half of Panel Area 11, all of Panel Area 12, a northern section of Panel Area 13 and a southern section of Panel Area 15 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.371. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red dot). The second image is a street view image with an eastwards view towards Panel Areas 11, 12 and 15. This image confirms that the vegetation is sufficient to screen all views of Panel Areas 11, 12 and 15 in the Principal Site where glint and glare is possible. The third image is a street view image with a westwards view towards Panel Area 13 in the Principal

Site. This image confirms that the vegetation is insufficient to screen all views Panel Area 13 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 71

- 6.372. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a southern and an eastern section of Panel Area 11, all of Panel Area 12, a northern section of Panel Area 13, a southwest section of Panel Area 14 and a southern section of Panel Area 15 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.373. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red dot). The second image is a street view image with an eastwards view towards Panel Areas 11, 12 and 15. This image confirms that the vegetation is sufficient to screen all views of Panel Areas 11 and 12 in the Principal Site where glint and glare is possible. The third image is a street view image with a westwards view towards Panel Area 13 in the Principal Site. This image confirms that the vegetation is insufficient to screen all views Panel Area 13 in the Principal Site where glint and glare is possible. Therefore, the impact remains **High**.

### Receptor 72

- 6.374. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a southern and an eastern section of Panel Area 11, all of Panel Area 12, all of Panel Area 13, a southwest section of Panel Area 14 and a southern section of Panel Area 15 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.375. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red and yellow dots respectively). The second image is a street view image with an eastwards view towards the receptor. This image confirms that the vegetation is sufficient to screen all views of Panel Areas 13, 14 and 15 in the Principal Site where glint and glare is possible. The third image is a street view image with a westwards view towards the receptor. This image confirms that the vegetation and intervening buildings are sufficient to screen all views Panel Area 13 in the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 73

- 6.376. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from all of Panel Area 12, the northern half and a southern section of Panel Area 13, all of Panel Area 14 and all, except a southern section, of Panel Area 15 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.377. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images

were taken (red dot). The second image is a street view image with an eastwards view towards Panel Area 12 in the Principal Site. The third image is a street view image with a westwards view towards Panel Areas 13, 14 and 15 in the Principal Site. These images confirms that the vegetation and intervening buildings are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptor 74

- 6.378. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from an eastern section of Panel Area 11, all of Panel Area 12, the northern half of Panel Area 13, all of Panel Area 14 and all, except a southern section, of Panel Area 15 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.379. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red and yellow dots respectively). The second image is a street view image with a westwards view towards the receptor. The third image is a street view image with a westwards view towards Panel Areas 13, 14 and 15 in the Principal Site. These images confirm that the vegetation and intervening buildings are sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

#### Receptor 75

- 6.380. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from all, except a northeast section of Panel Area 8, all, except a northwest corner, of Panel Area 12, the northern half of Panel Area 13, all of Panel Area 14 and all, except a southern section, of Panel Area 15 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.
- 6.381. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second and third images were taken (red dot). The second image is a street view image with a northeast view towards Panel Area 12 in the Principal Site. This image confirms that the vegetation is insufficient to screen all views of Panel Area 12 in the Principal Site where glint and glare is possible. The third image is a street view image with a southwest view towards the receptor. This image confirms that the vegetation is sufficient to screen all views of Panel Areas 13, 14 and 15 in the Principal Site where glint and glare is possible. Therefore, the impact reduces to **Low**.

#### Receptor 76

- 6.382. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from a small western section of Panel Area 1, a southern section of Panel Area 6, all of Panel Area 8, a southern section of Panel Area 11, the northern half of Panel Area 13, all of Panel Area 14 and all of Panel Area 15 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.383. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). The second image is a street view image with an eastwards view towards the receptor. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 77

6.384. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from all of Panel Area 8, all, except a southern section, of Panel Area 13, all of Panel Area 14, and all of Panel Area 15 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.385. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). The second image is a street view image with an eastwards view towards the receptor. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

### Receptor 78

6.386. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from all of Panel Area 12 and a southern section of Panel Area 13 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.387. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second, third and fourth images were taken (red dot). The second image is a street view image with an eastwards view towards the receptor. This image confirms that the vegetation is sufficient to screen all views of Panel Area 12 in the Principal Site where glint and glare is possible. The third and fourth images are ground level images a westwards view towards Panel Area 13 in the Principal Site showing the position of the sun at 19:00 UTC on May 25<sup>th</sup> and at 19:15 UTC on July 1<sup>st</sup> respectively. However, the impacts occur when the Sun is low in the sky and behind the solar array at the time of glare impacts. Hence, the Sun's reflections will be far greater than those reflections from the solar array, as outlined in **paragraph 4.16**. These images confirm that the sun will be the main source of solar reflection at the receptor. Therefore, the impact reduces to **Low**.

### Receptor 79

6.388. The 'Glint and Glare' chart in **Appendix K – M** shows that reflections from all, except a northwest corner, of Panel Area 12 and a southern section of Panel Area 13 (see **Figure 6: Appendix A**) of the Principal Site can potentially impact on the receptor.

6.389. The first image in **Appendix Q** is an aerial view which shows the location of the receptor (yellow pin) in relation to the Principal Site, and the location from which the second image was taken (red dot). The second image is a street view image with an eastwards view towards the receptor. This image confirms that the vegetation is sufficient to screen all views of the Principal Site where glint and glare is possible. Therefore, the impact reduces to **None**.

## Aviation Receptors

6.390. **Appendix N** shows the analysis for a tilt angle of 5 degrees, **Appendix O** shows the analysis for a tilt angle of 45 degrees and **Appendix P** shows the analysis for the tracker panels.

6.391. Table 21: Summary of Aviation Glare Results shows a summary of the modelling results for each of the runway approach paths and the ATCTs and shows which panel configuration (minimum or maximum angle for fixed tilt or single axis tracker) produces the highest impact upon the receptor, whilst the detailed results and ocular impact charts can be viewed in **Appendix N, O and P**. Eastern and western circuit paths for RAF Waddington have also been modelled. These extend for 2 nautical miles along the runway heading, before turning 90 degrees for another 2 nautical miles and finally turning 90 degrees for the downwind leg of the circuit path up to an altitude of 1000 feet.

6.392. **Appendix N** shows the analysis for a tilt angle of 5 degrees, **Appendix O** shows the analysis for a tilt angle of 45 degrees and **Appendix P** shows the analysis for the tracker panels.

**Table 21: Summary of Aviation Glare Results**

| Component                     | Green Glare (mins per year) | Yellow Glare (mins per year) | Red Glare (mins per year) | Worst Case Tilt Angle (degrees) |
|-------------------------------|-----------------------------|------------------------------|---------------------------|---------------------------------|
| <b>RAF Waddington</b>         |                             |                              |                           |                                 |
| Runway 02                     | 0                           | 0                            | 0                         | N/A                             |
| Runway 20                     | 1029                        | 0                            | 0                         | Tracker                         |
| Circuit Path East             | 35246                       | 0                            | 0                         | 5                               |
| Circuit Path West             | 65610                       | 7156                         | 0                         | 5                               |
| ATCT                          | 1429                        | 0                            | 0                         | 5                               |
| <b>Peacock's Farm</b>         |                             |                              |                           |                                 |
| Runway 06                     | 20505                       | 28692                        | 0                         | 5                               |
| Runway 24                     | 9919                        | 1770                         | 0                         | 5                               |
| <b>South Hykeham Airfield</b> |                             |                              |                           |                                 |

|                              |       |     |   |         |
|------------------------------|-------|-----|---|---------|
| Runway 10                    | 283   | 0   | 0 | 5       |
| Runway 28                    | 5085  | 256 | 0 | 45      |
| Runway 13                    | 0     | 0   | 0 | N/A     |
| Runway 31                    | 7757  | 593 | 0 | 45      |
| <b>South Scarle Airfield</b> |       |     |   |         |
| Runway 01                    | 7394  | 462 | 0 | 45      |
| Runway 19                    | 0     | 0   | 0 | N/A     |
| <b>Blackmoor Farm</b>        |       |     |   |         |
| Runway 06                    | 17496 | 0   | 0 | 45      |
| Runway 24                    | 6260  | 0   | 0 | Tracker |

6.393. As can be seen in **Appendix N** shows the analysis for a tilt angle of 5 degrees, **Appendix O** shows the analysis for a tilt angle of 45 degrees and **Appendix P** shows the analysis for the tracker panels.

6.394. Table 21: Summary of Aviation Glare Results **Table 21** shows there are no Glare impacts for the Runway 13 approach path at South Hykeham Airfield, the Runway 28 approach path at South Scarle Airfield or the Runway 02 approach path at RAF Waddington. There is green glare potential for the Runway 10 approach path at South Hykeham Airfield, the Runway 06 and 24 approach paths at Blackmoor Farm and the Runway 20 approach path, the eastern circuit path and ATCT at RAF Waddington. Green glare is an **acceptable impact** upon runways and a **not acceptable impact** upon ATCTs according to FAA guidance. There is yellow glare and green glare potential for the Runway approach paths at Peacocks Farm, the Runway 28 and 31 approach paths at South Hykeham Airfield, the Runway 10 approach at South Scarle Airfield and the western circuit path at RAF Waddington. Yellow glare is a **not acceptable impact** upon runways according to FAA guidance.

6.395. To determine the actual impact of glare for the ATCT at RAF Waddington, an assessment of the ground elevation between the ATCT and the Principal Site has been undertaken, with ground elevation profiles visible in **Appendix R**.

6.396. It is important to note that these predicted results are the absolute worst-case scenario as the model does not account for variations such as cloud cover. Once cloud cover is considered, the total duration of predicted glare will decrease significantly and as such, will decrease impact further. Additionally, as outlined within the updated policy from the FAA and the CAA's CAP738 document, glare impacts have not been reported to cause pilots more impact than other existing infrastructure, such as; car parks, glass buildings and water bodies. Thus, the FAA have reduced the assessment criteria to only assess glare impacts ATCTs.

6.397. To determine the actual impact of glare for pilots upon approach at Peacocks Farm, South Hykeham Airfield, South Scarle Airfield and Blakmoor Farm, a visibility assessment of where the sun will be located at the time of impact in relation to each array has been undertaken, with these images visible in **Appendix Q**. The approach path to the runways have been drawn as a red line and the field of view of a pilot has been drawn as yellow lines.

### RAF Waddington

6.398. As can be seen in **Appendix Q**, potential yellow glare impacts occur upon the western circuit path for RAF Waddington either in the afternoon and evening periods when the sun is low in the sky and behind the areas of the Principal Site that have potential glare impacts within a pilot's field of view (FOV). These impacts will be no worse than the current impacts observed when flying towards a setting sun. Furthermore, if the panel type within Array 7, 11 and 13 is fixed south facing at 45 degrees then the total impact reduces to 499 minutes of yellow glare per year. These impacts only occur for a maximum of 25 minutes per day in mid-April/August at 6pm. The model also shows impacts as being far worse than they would be in reality due to the model limitations outlined within **paragraph 4.41**. Therefore, the impacts can be deemed **acceptable** providing the panel types used within Array 7, 11 and 13 are fixed south facing with a 45 degree tilt

6.399. As can be seen in **Appendix R**, the ground elevation profile between the air traffic control tower at RAF Waddington and the Principal Site shows a terrain feature approximately 1km from the ATCT which is elevated approximately 10m AOD higher than the ATCT and approximately 35 - 65m AOD higher than the Principal Site. This terrain feature will block all views of the Principal Site from the ATCT at RAF Waddington. Therefore, the impact on the ATCT at RAF Waddington is **None**.

### Peacocks Farm

6.400. As can be seen in **Appendix Q**, potential yellow glare impacts occur upon the Runway 06 approach path to Peacocks Farm either early in the morning or when the sun is low in the sky and behind the areas of the Principal Site that have potential glare impacts within a pilot's field of view (FOV). Therefore, the impacts can be deemed **acceptable**.

6.401. As can be seen in **Appendix Q**, potential yellow glare impacts occur upon the Runway 24 approach path to Peacocks Farm either late in the evening or when the sun is low in the sky and behind the areas of the Principal Site that have potential glare impacts within a pilot's field of view (FOV). Therefore, the impacts can be deemed **acceptable**.

### South Hykeham Airfield

6.402. As can be seen in **Appendix Q**, potential yellow glare impacts occur upon the Runway 28 approach path to South Hykeham Airfield when the sun is low in the sky and behind the areas of the Principal Site that have potential glare impacts within a pilot's field of view (FOV). Therefore, the impacts can be deemed **acceptable**.

6.403. As can be seen in **Appendix Q**, potential yellow glare impacts occur upon the Runway 31 approach path to South Hykeham Airfield late in the evening. Additionally, yellow glare is only predicted to impact the approach path for less than 10 hours per year. Therefore, the impacts can be deemed **acceptable**.

### South Scarle Airfield

6.404. As can be seen in **Appendix Q**, potential yellow glare impacts occur upon the Runway 10 approach path to South Scarle Airfield when the sun is low in the sky and behind the areas of the Principal Site that have potential glare impacts within a pilot's field of view (FOV). Therefore, the impacts can be deemed **acceptable**.

### Impact Rating Justification

6.405. As outlined in **paragraph 4.16** the sun's reflections will be far greater than those reflections from the solar array. Pilots on approach are often landing into the sun at sunset or sunrise. The sun's impact can be mitigated by wearing sunglasses, using darkened cockpit sun visors, overflying and inspecting the runway, landing in the opposite direction if wind conditions allow and planning their flight to land outside the times when sun glare if possible. In addition, given the glare impacts which occur at or just after sunrise and the type of aircraft using these airfields, it is unlikely that these aircraft will be setting off early enough to arrive at the times at which glare is predicted to occur for approaches to Runway 06 approach path at Peacocks Farm, Runway 10 at South Scarle Airfield. Given the glare impacts which occur at or just before sunset and the type of aircraft using these airfields, it is unlikely that these aircraft will be approaching the unlit grass strips late enough to arrive at the times which glare is predicted to occur for approaches to Runway 24 at Peacocks Farm and Runway 31 at South Hykeham Airfield.

6.406. As outlined in **Section 4**, the UK Government and the FAA do not consider glint and glare impacts from solar farms to result in significant impairment on aircraft safety.

6.407. Overall impacts on Aviation receptors are therefore **Low** and **Not Significant**.

## 7. GROUND BASED RECEPTOR MITIGATION

7.1. **Mitigation** is required due to the impacts found for the Residential Receptors 97, 98, 101, 102, 148, 155, 157 – 160, 196 and 197, Road Receptors 13 - 16, 45, 78 - 80, 82 – 84, 98 – 104, 113, 144 – 148 and 177 - 182 and Bridleway Receptors 2 – 6, 8 – 11, 14 – 16, 27 – 38, 54 – 62 and 65 – 71 being **High** or **Medium**. This includes:

- f. The hedges and trees along panel boundaries, field boundaries and bridleway boundaries as shown in **Figure 7.15-1: Landscape Masterplan**, presented within the **Framework LEMP [EN010154/APP/7.15** in the Principal Site being managed to deliver a minimum height at least the same as the upper edge of the panels, which is currently proposed at a maximum 3.5m. This will screen views from Residential Receptors 97, 98, 101, 102, 148, 155, 157 – 160, 196 and 197, Road Receptors 13 - 16, 45, 78 - 80, 82 – 84, 98 – 104, 113, 144 – 148 and 177 - 182 and Bridleway Receptors 2 – 6, 8 – 11, 14 – 16, 27 – 38, 54 – 62 and 65 – 71. Therefore, the impacts reduce to **None**.
- g. The mitigation measures outlined above will also screen the **Low** impact views from Residential Receptors 23, 28, 38 – 41, 81, 82, 100, 156, 161 and 164 and Bridleway Receptors 25, 26, 45, 46 and 75.

7.2. **Table 22, Table 23, Table 24 and Table 25** show the impacts at each stage of the glint and glare analysis, with the final residual impacts considered once the mitigation is in place.

**Table 22: Residual Glint and Glare Impacts on Residential Receptors**

| Receptor | Magnitude of Impact      |                             |                  |
|----------|--------------------------|-----------------------------|------------------|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |
| 1        | None                     | None                        | <b>None</b>      |
| 2        | None                     | None                        | <b>None</b>      |
| 3        | None                     | None                        | <b>None</b>      |
| 4 (1)    | None                     | None                        | <b>None</b>      |
| 5 (1)    | Low                      | None                        | <b>None</b>      |
| 6        | Low                      | None                        | <b>None</b>      |
| 7        | Low                      | None                        | <b>None</b>      |
| 8        | Low                      | None                        | <b>None</b>      |

| Receptor | Magnitude of Impact      |                             |                  |
|----------|--------------------------|-----------------------------|------------------|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |
| 9        | Low                      | None                        | None             |
| 10       | Low                      | None                        | None             |
| 11       | Low                      | None                        | None             |
| 12       | Medium                   | None                        | None             |
| 13 (2)   | Low                      | Low                         | Low              |
| 14 (2)   | Medium                   | None                        | None             |
| 15 (2)   | High                     | Low                         | Low              |
| 16 (2)   | High                     | Low                         | Low              |
| 17 (2)   | High                     | Low                         | Low              |
| 18 (2)   | High                     | Low                         | Low              |
| 19 (2)   | High                     | Low                         | Low              |
| 20       | Low                      | None                        | None             |
| 21       | Medium                   | Low                         | Low              |
| 22       | Medium                   | Low                         | Low              |
| 23 (3)   | High                     | Low                         | None             |
| 24 (3)   | High                     | Low                         | Low              |
| 25       | Low                      | Low                         | Low              |
| 26       | Low                      | Low                         | Low              |
| 27       | Low                      | Low                         | Low              |
| 28       | Medium                   | Low                         | None             |
| 29       | High                     | Low                         | Low              |
| 30       | Medium                   | None                        | None             |
| 31       | Medium                   | None                        | None             |
| 32       | Low                      | None                        | None             |
| 33       | Medium                   | None                        | None             |

| Receptor | Magnitude of Impact      |                             |                  |
|----------|--------------------------|-----------------------------|------------------|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |
| 34       | Low                      | None                        | None             |
| 35       | None                     | None                        | None             |
| 36       | None                     | None                        | None             |
| 37       | None                     | None                        | None             |
| 38 (4)   | High                     | Low                         | None             |
| 39 (4)   | High                     | Low                         | None             |
| 40 (4)   | High                     | Low                         | None             |
| 41 (4)   | High                     | Low                         | None             |
| 42       | None                     | None                        | None             |
| 43 (5)   | Low                      | None                        | None             |
| 44 (5)   | Low                      | None                        | None             |
| 45 (5)   | Low                      | None                        | None             |
| 46       | Low                      | None                        | None             |
| 47       | Low                      | None                        | None             |
| 48       | None                     | None                        | None             |
| 49       | Low                      | None                        | None             |
| 50 (6)   | Low                      | None                        | None             |
| 51 (6)   | Low                      | None                        | None             |
| 52 (7)   | Low                      | Low                         | Low              |
| 53 (7)   | Low                      | None                        | None             |
| 54 (7)   | Low                      | None                        | None             |
| 55 (7)   | Medium                   | None                        | None             |
| 56 (7)   | Low                      | None                        | None             |
| 57 (7)   | Low                      | None                        | None             |
| 58 (7)   | Low                      | None                        | None             |

| Receptor | Magnitude of Impact      |                             |                  |
|----------|--------------------------|-----------------------------|------------------|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |
| 59 (7)   | Medium                   | None                        | None             |
| 60 (7)   | High                     | None                        | None             |
| 61 (7)   | Medium                   | None                        | None             |
| 62 (7)   | High                     | None                        | None             |
| 63 (7)   | High                     | None                        | None             |
| 64 (7)   | High                     | Low                         | Low              |
| 65 (7)   | Medium                   | Low                         | Low              |
| 66 (7)   | Low                      | Low                         | Low              |
| 67 (7)   | Low                      | Low                         | Low              |
| 68 (8)   | Low                      | None                        | None             |
| 69 (8)   | Low                      | None                        | None             |
| 70 (8)   | Low                      | None                        | None             |
| 71       | Low                      | Low                         | Low              |
| 72       | High                     | None                        | None             |
| 73 (9)   | High                     | None                        | None             |
| 74 (9)   | High                     | None                        | None             |
| 75       | High                     | None                        | None             |
| 76       | High                     | None                        | None             |
| 77       | High                     | None                        | None             |
| 78       | Low                      | None                        | None             |
| 79       | Low                      | None                        | None             |
| 80       | Low                      | None                        | None             |
| 81       | High                     | Low                         | None             |
| 82       | High                     | Low                         | None             |
| 83       | High                     | None                        | None             |

| Receptor | Magnitude of Impact      |                             |                  |
|----------|--------------------------|-----------------------------|------------------|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |
| 84       | None                     | None                        | None             |
| 85       | None                     | None                        | None             |
| 86       | None                     | None                        | None             |
| 87 (10)  | None                     | None                        | None             |
| 88 (10)  | None                     | None                        | None             |
| 89 (10)  | None                     | None                        | None             |
| 90 (10)  | None                     | None                        | None             |
| 91 (10)  | None                     | None                        | None             |
| 92 (10)  | None                     | None                        | None             |
| 93 (10)  | Low                      | None                        | None             |
| 94 (10)  | Low                      | None                        | None             |
| 95 (10)  | Low                      | None                        | None             |
| 96 (10)  | High                     | None                        | None             |
| 97 (10)  | High                     | High                        | None             |
| 98 (10)  | Low                      | High                        | None             |
| 99 (10)  | Low                      | None                        | None             |
| 100 (10) | High                     | Low                         | None             |
| 101 (10) | High                     | High                        | None             |
| 102 (10) | High                     | High                        | None             |
| 103 (10) | High                     | None                        | None             |
| 104 (10) | Low                      | None                        | None             |
| 105 (10) | None                     | None                        | None             |
| 106 (10) | Low                      | None                        | None             |
| 107 (10) | Low                      | None                        | None             |
| 108 (10) | Low                      | Low                         | Low              |

| Receptor | Magnitude of Impact      |                             |                  |
|----------|--------------------------|-----------------------------|------------------|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |
| 109 (10) | None                     | None                        | <b>None</b>      |
| 110 (10) | Low                      | None                        | <b>None</b>      |
| 111 (10) | Low                      | None                        | <b>None</b>      |
| 112 (10) | Low                      | None                        | <b>None</b>      |
| 113 (10) | Low                      | None                        | <b>None</b>      |
| 114 (10) | None                     | None                        | <b>None</b>      |
| 115 (10) | None                     | None                        | <b>None</b>      |
| 116 (10) | None                     | None                        | <b>None</b>      |
| 117 (11) | Low                      | None                        | <b>None</b>      |
| 118 (11) | Low                      | None                        | <b>None</b>      |
| 119 (11) | Low                      | None                        | <b>None</b>      |
| 120 (11) | None                     | None                        | <b>None</b>      |
| 121      | Low                      | None                        | <b>None</b>      |
| 122      | High                     | None                        | <b>None</b>      |
| 123 (12) | Low                      | None                        | <b>None</b>      |
| 124 (12) | Low                      | None                        | <b>None</b>      |
| 125      | Low                      | None                        | <b>None</b>      |
| 126 (13) | None                     | None                        | <b>None</b>      |
| 127 (13) | None                     | None                        | <b>None</b>      |
| 128 (13) | None                     | None                        | <b>None</b>      |
| 129 (13) | None                     | None                        | <b>None</b>      |
| 130 (13) | None                     | None                        | <b>None</b>      |
| 131 (13) | None                     | None                        | <b>None</b>      |
| 132      | None                     | None                        | <b>None</b>      |
| 133      | None                     | None                        | <b>None</b>      |

| Receptor | Magnitude of Impact      |                             |                  |
|----------|--------------------------|-----------------------------|------------------|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |
| 134 (14) | None                     | None                        | None             |
| 135 (14) | Low                      | None                        | None             |
| 136 (15) | High                     | None                        | None             |
| 137 (15) | High                     | None                        | None             |
| 138 (15) | Medium                   | None                        | None             |
| 139 (16) | Low                      | None                        | None             |
| 140 (16) | Low                      | None                        | None             |
| 141 (16) | Low                      | None                        | None             |
| 142 (16) | Low                      | None                        | None             |
| 143 (17) | Low                      | None                        | None             |
| 144 (17) | Low                      | None                        | None             |
| 145      | Low                      | None                        | None             |
| 146      | Low                      | None                        | None             |
| 147      | Low                      | None                        | None             |
| 148      | High                     | High                        | None             |
| 149      | Low                      | None                        | None             |
| 150      | Low                      | None                        | None             |
| 151      | Low                      | Low                         | Low              |
| 152 (18) | Low                      | None                        | None             |
| 153 (18) | Low                      | None                        | None             |
| 154 (18) | Low                      | None                        | None             |
| 155      | Medium                   | Medium                      | None             |
| 156      | Low                      | Low                         | None             |
| 157      | High                     | High                        | None             |
| 158      | High                     | High                        | None             |

| Receptor | Magnitude of Impact      |                             |                  |
|----------|--------------------------|-----------------------------|------------------|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |
| 159      | Low                      | High                        | None             |
| 160      | Low                      | High                        | None             |
| 161      | Low                      | Low                         | None             |
| 162      | High                     | High                        | None             |
| 163      | High                     | High                        | None             |
| 164      | High                     | Low                         | None             |
| 165      | None                     | None                        | None             |
| 166      | None                     | None                        | None             |
| 167      | None                     | None                        | None             |
| 168      | None                     | None                        | None             |
| 169 (19) | Low                      | None                        | None             |
| 170 (19) | Low                      | None                        | None             |
| 171 (19) | Low                      | None                        | None             |
| 172 (19) | Low                      | None                        | None             |
| 173 (19) | Low                      | None                        | None             |
| 174 (19) | None                     | None                        | None             |
| 175 (19) | None                     | None                        | None             |
| 176 (19) | None                     | None                        | None             |
| 177 (19) | None                     | None                        | None             |
| 178 (19) | Low                      | None                        | None             |
| 179 (19) | Low                      | None                        | None             |
| 180 (19) | Low                      | None                        | None             |
| 181 (19) | Low                      | None                        | None             |
| 182 (19) | Low                      | None                        | None             |
| 183 (19) | Low                      | Low                         | Low              |

| Receptor | Magnitude of Impact      |                             |                  |
|----------|--------------------------|-----------------------------|------------------|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |
| 184 (19) | Low                      | None                        | Low              |
| 185 (19) | Low                      | Low                         | Low              |
| 186 (19) | Low                      | None                        | None             |
| 187 (19) | Low                      | Low                         | Low              |
| 188 (19) | Low                      | Low                         | Low              |
| 189 (19) | Low                      | Low                         | Low              |
| 190 (19) | Low                      | Low                         | Low              |
| 191 (19) | Low                      | None                        | None             |
| 192 (19) | Low                      | None                        | None             |
| 193      | Low                      | None                        | None             |
| 194 (20) | Low                      | None                        | None             |
| 195 (20) | Low                      | None                        | None             |
| 196 (21) | Medium                   | Medium                      | None             |
| 197 (21) | Medium                   | Medium                      | None             |
| 198 (21) | Medium                   | Low                         | Low              |
| 199 (21) | Low                      | Low                         | Low              |
| 200 (21) | None                     | None                        | None             |
| 201 (21) | None                     | None                        | None             |
| 202 (21) | Medium                   | None                        | None             |
| 203 (21) | Low                      | None                        | None             |
| 204 (22) | None                     | None                        | None             |
| 205 (22) | None                     | None                        | None             |
| 206 (22) | Low                      | None                        | None             |
| 207 (22) | High                     | None                        | None             |
| 208 (22) | High                     | None                        | None             |

| Receptor | Magnitude of Impact      |                             |                  |
|----------|--------------------------|-----------------------------|------------------|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |
| 209 (22) | High                     | None                        | None             |
| 210 (22) | High                     | None                        | None             |
| 211 (22) | High                     | None                        | None             |
| 212 (22) | High                     | None                        | None             |
| 213 (22) | Low                      | None                        | None             |
| 214 (22) | High                     | None                        | None             |
| 215 (22) | Low                      | None                        | None             |
| 216 (22) | Low                      | Low                         | None             |
| 217 (22) | Medium                   | None                        | Low              |
| 218 (22) | High                     | Low                         | Low              |
| 219 (22) | Medium                   | Low                         | Low              |
| 220 (22) | Low                      | None                        | None             |
| 221 (22) | Low                      | None                        | None             |
| 222 (22) | Low                      | None                        | None             |
| 223 (22) | None                     | None                        | None             |
| 224 (22) | None                     | None                        | None             |
| 225 (22) | None                     | None                        | None             |
| 226 (22) | None                     | None                        | None             |
| 227 (22) | None                     | None                        | None             |
| 228 (22) | None                     | None                        | None             |

Table 23: Residual Glint and Glare Impacts on Road Receptors

| Receptor | Magnitude of Impact      |                             |                  |
|----------|--------------------------|-----------------------------|------------------|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |
| 1        | Low                      | None                        | None             |

| Receptor | Magnitude of Impact      |                             |                  |  |
|----------|--------------------------|-----------------------------|------------------|--|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |  |
| 2        | Low                      | None                        | None             |  |
| 3        | Low                      | None                        | None             |  |
| 4        | Low                      | None                        | None             |  |
| 5        | Low                      | None                        | None             |  |
| 6        | Low                      | None                        | None             |  |
| 7        | High                     | None                        | None             |  |
| 8        | High                     | None                        | None             |  |
| 9        | High                     | None                        | None             |  |
| 10       | High                     | None                        | None             |  |
| 11       | High                     | None                        | None             |  |
| 12       | High                     | None                        | None             |  |
| 13       | High                     | High                        | None             |  |
| 14       | High                     | High                        | None             |  |
| 15       | High                     | High                        | None             |  |
| 16       | High                     | High                        | None             |  |
| 17       | High                     | None                        | None             |  |
| 18       | High                     | None                        | None             |  |
| 19       | High                     | None                        | None             |  |
| 20       | High                     | None                        | None             |  |
| 21       | High                     | None                        | None             |  |
| 22       | High                     | None                        | None             |  |
| 23       | High                     | None                        | None             |  |
| 24       | High                     | None                        | None             |  |
| 25       | Low                      | None                        | None             |  |
| 26       | Low                      | None                        | None             |  |

| Receptor | Magnitude of Impact      |                             |                  |  |
|----------|--------------------------|-----------------------------|------------------|--|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |  |
| 27       | Low                      | None                        | None             |  |
| 28       | Low                      | None                        | None             |  |
| 29       | Low                      | None                        | None             |  |
| 30       | High                     | None                        | None             |  |
| 31       | High                     | None                        | None             |  |
| 32       | High                     | None                        | None             |  |
| 33       | High                     | None                        | None             |  |
| 34       | High                     | None                        | None             |  |
| 35       | High                     | None                        | None             |  |
| 36       | High                     | None                        | None             |  |
| 37       | Low                      | None                        | None             |  |
| 38       | High                     | None                        | None             |  |
| 39       | High                     | None                        | None             |  |
| 40       | High                     | None                        | None             |  |
| 41       | High                     | None                        | None             |  |
| 42       | High                     | None                        | None             |  |
| 43       | High                     | None                        | None             |  |
| 44       | High                     | None                        | None             |  |
| 45       | High                     | High                        | None             |  |
| 46       | High                     | None                        | None             |  |
| 47       | High                     | None                        | None             |  |
| 48       | High                     | None                        | None             |  |
| 49       | High                     | None                        | None             |  |
| 50       | Low                      | None                        | None             |  |
| 51       | Low                      | None                        | None             |  |

| Receptor | Magnitude of Impact      |                             |                  |  |
|----------|--------------------------|-----------------------------|------------------|--|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |  |
| 52       | Low                      | None                        | None             |  |
| 53       | Low                      | None                        | None             |  |
| 54       | Low                      | None                        | None             |  |
| 55       | Low                      | None                        | None             |  |
| 56       | None                     | None                        | None             |  |
| 57       | Low                      | None                        | None             |  |
| 58       | High                     | None                        | None             |  |
| 59       | High                     | None                        | None             |  |
| 60       | Low                      | None                        | None             |  |
| 61       | Low                      | None                        | None             |  |
| 62       | High                     | None                        | None             |  |
| 63       | High                     | None                        | None             |  |
| 64       | Low                      | None                        | None             |  |
| 65       | High                     | None                        | None             |  |
| 66       | High                     | None                        | None             |  |
| 67       | High                     | None                        | None             |  |
| 68       | High                     | None                        | None             |  |
| 69       | High                     | None                        | None             |  |
| 70       | High                     | None                        | None             |  |
| 71       | Low                      | None                        | None             |  |
| 72       | Low                      | None                        | None             |  |
| 73       | High                     | None                        | None             |  |
| 74       | High                     | None                        | None             |  |
| 75       | High                     | None                        | None             |  |
| 76       | High                     | None                        | None             |  |

| Receptor | Magnitude of Impact      |                             |                  |  |
|----------|--------------------------|-----------------------------|------------------|--|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |  |
| 77       | High                     | None                        | None             |  |
| 78       | High                     | High                        | None             |  |
| 79       | High                     | High                        | None             |  |
| 80       | High                     | High                        | None             |  |
| 81       | High                     | None                        | None             |  |
| 82       | High                     | High                        | None             |  |
| 83       | High                     | High                        | None             |  |
| 84       | High                     | High                        | None             |  |
| 85       | High                     | None                        | None             |  |
| 86       | High                     | None                        | None             |  |
| 87       | High                     | None                        | None             |  |
| 88       | High                     | None                        | None             |  |
| 89       | High                     | None                        | None             |  |
| 90       | Low                      | None                        | None             |  |
| 91       | High                     | None                        | None             |  |
| 92       | High                     | None                        | None             |  |
| 93       | High                     | None                        | None             |  |
| 94       | High                     | None                        | None             |  |
| 95       | High                     | None                        | None             |  |
| 96       | High                     | None                        | None             |  |
| 97       | High                     | None                        | None             |  |
| 98       | High                     | High                        | None             |  |
| 99       | High                     | High                        | None             |  |
| 100      | High                     | High                        | None             |  |
| 101      | High                     | High                        | None             |  |

| Receptor | Magnitude of Impact      |                             |                  |  |
|----------|--------------------------|-----------------------------|------------------|--|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |  |
| 102      | High                     | High                        | None             |  |
| 103      | High                     | High                        | None             |  |
| 104      | High                     | High                        | None             |  |
| 105      | Low                      | None                        | None             |  |
| 106      | Low                      | None                        | None             |  |
| 107      | Low                      | None                        | None             |  |
| 108      | Low                      | None                        | None             |  |
| 109      | Low                      | None                        | None             |  |
| 110      | Low                      | None                        | None             |  |
| 111      | Low                      | None                        | None             |  |
| 112      | High                     | None                        | None             |  |
| 113      | High                     | High                        | None             |  |
| 114      | High                     | None                        | None             |  |
| 115      | High                     | None                        | None             |  |
| 116      | High                     | None                        | None             |  |
| 117      | Low                      | None                        | None             |  |
| 118      | Low                      | None                        | None             |  |
| 119      | High                     | None                        | None             |  |
| 120      | High                     | None                        | None             |  |
| 121      | High                     | None                        | None             |  |
| 122      | High                     | None                        | None             |  |
| 123      | High                     | None                        | None             |  |
| 124      | High                     | None                        | None             |  |
| 125      | Low                      | None                        | None             |  |
| 126      | High                     | None                        | None             |  |

| Receptor | Magnitude of Impact      |                             |                  |  |
|----------|--------------------------|-----------------------------|------------------|--|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |  |
| 127      | High                     | None                        | None             |  |
| 128      | High                     | None                        | None             |  |
| 129      | High                     | None                        | None             |  |
| 130      | High                     | None                        | None             |  |
| 131      | High                     | None                        | None             |  |
| 132      | High                     | None                        | None             |  |
| 133      | High                     | None                        | None             |  |
| 134      | High                     | None                        | None             |  |
| 135      | High                     | None                        | None             |  |
| 136      | Low                      | None                        | None             |  |
| 137      | Low                      | None                        | None             |  |
| 138      | Low                      | None                        | None             |  |
| 139      | Low                      | None                        | None             |  |
| 140      | Low                      | None                        | None             |  |
| 141      | High                     | None                        | None             |  |
| 142      | High                     | None                        | None             |  |
| 143      | High                     | None                        | None             |  |
| 144      | High                     | High                        | None             |  |
| 145      | High                     | High                        | None             |  |
| 146      | High                     | High                        | None             |  |
| 147      | High                     | High                        | None             |  |
| 148      | High                     | High                        | None             |  |
| 149      | High                     | None                        | None             |  |
| 150      | High                     | None                        | None             |  |
| 151      | High                     | None                        | None             |  |

| Receptor | Magnitude of Impact      |                             |                  |  |
|----------|--------------------------|-----------------------------|------------------|--|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |  |
| 152      | High                     | None                        | None             |  |
| 153      | High                     | None                        | None             |  |
| 154      | High                     | None                        | None             |  |
| 155      | High                     | None                        | None             |  |
| 156      | High                     | None                        | None             |  |
| 157      | High                     | None                        | None             |  |
| 158      | High                     | None                        | None             |  |
| 159      | High                     | None                        | None             |  |
| 160      | High                     | None                        | None             |  |
| 161      | High                     | None                        | None             |  |
| 162      | High                     | None                        | None             |  |
| 163      | Low                      | None                        | None             |  |
| 164      | Low                      | None                        | None             |  |
| 165      | Low                      | None                        | None             |  |
| 166      | Low                      | None                        | None             |  |
| 167      | Low                      | None                        | None             |  |
| 168      | Low                      | None                        | None             |  |
| 169      | Low                      | None                        | None             |  |
| 170      | Low                      | None                        | None             |  |
| 171      | Low                      | None                        | None             |  |
| 172      | Low                      | None                        | None             |  |
| 173      | Low                      | None                        | None             |  |
| 174      | Low                      | None                        | None             |  |
| 175      | Low                      | None                        | None             |  |
| 176      | High                     | None                        | None             |  |

| Receptor | Magnitude of Impact      |                             |                  |  |
|----------|--------------------------|-----------------------------|------------------|--|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |  |
| 177      | High                     | High                        | None             |  |
| 178      | High                     | High                        | None             |  |
| 179      | High                     | High                        | None             |  |
| 180      | High                     | High                        | None             |  |
| 181      | High                     | High                        | None             |  |
| 182      | High                     | High                        | None             |  |
| 183      | High                     | None                        | None             |  |
| 184      | High                     | None                        | None             |  |
| 185      | High                     | None                        | None             |  |
| 186      | High                     | None                        | None             |  |
| 187      | High                     | None                        | None             |  |
| 188      | High                     | None                        | None             |  |
| 189      | High                     | None                        | None             |  |
| 190      | High                     | None                        | None             |  |
| 191      | High                     | None                        | None             |  |
| 192      | High                     | None                        | None             |  |
| 193      | High                     | None                        | None             |  |
| 194      | High                     | None                        | None             |  |
| 195      | High                     | None                        | None             |  |
| 196      | None                     | None                        | None             |  |
| 197      | Low                      | None                        | None             |  |
| 198      | High                     | None                        | None             |  |
| 199      | High                     | None                        | None             |  |
| 200      | High                     | None                        | None             |  |
| 201      | High                     | None                        | None             |  |

| Receptor | Magnitude of Impact      |                             |                  |  |
|----------|--------------------------|-----------------------------|------------------|--|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |  |
| 202      | High                     | None                        | None             |  |
| 203      | High                     | None                        | None             |  |
| 204      | High                     | None                        | None             |  |
| 205      | Low                      | None                        | None             |  |
| 206      | Low                      | None                        | None             |  |
| 207      | Low                      | None                        | None             |  |
| 208      | Low                      | None                        | None             |  |
| 209      | Low                      | None                        | None             |  |
| 210      | High                     | None                        | None             |  |
| 211      | High                     | None                        | None             |  |
| 212      | High                     | None                        | None             |  |
| 213      | High                     | None                        | None             |  |
| 214      | High                     | None                        | None             |  |
| 215      | High                     | None                        | None             |  |
| 216      | High                     | None                        | None             |  |
| 217      | High                     | None                        | None             |  |

Table 24: Residual Glint and Glare Impacts on Rail Receptors

| Receptor | Magnitude of Impact      |                             |                  |  |
|----------|--------------------------|-----------------------------|------------------|--|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |  |
| 1        | High                     | None                        | None             |  |
| 2        | High                     | None                        | None             |  |
| 3        | High                     | None                        | None             |  |
| 4        | High                     | None                        | None             |  |
| 5        | High                     | None                        | None             |  |

| Receptor | Magnitude of Impact      |                             |                  |
|----------|--------------------------|-----------------------------|------------------|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |
| 6        | Low                      | None                        | None             |
| 7        | Low                      | None                        | None             |
| 8        | Low                      | None                        | None             |
| 9        | High                     | None                        | None             |
| 10       | High                     | None                        | None             |
| 11       | High                     | None                        | None             |
| 12       | High                     | None                        | None             |
| 13       | High                     | None                        | None             |

Table 25: Residual Glint and Glare Impacts on Bridleway Receptors

| Receptor | Magnitude of Impact      |                             |                  |
|----------|--------------------------|-----------------------------|------------------|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |
| 1        | High                     | None                        | None             |
| 2        | High                     | High                        | None             |
| 3        | High                     | High                        | None             |
| 4        | High                     | High                        | None             |
| 5        | High                     | High                        | None             |
| 6        | High                     | High                        | None             |
| 7        | Low                      | None                        | None             |
| 8        | Low                      | High                        | None             |
| 9        | Low                      | High                        | None             |
| 10       | Low                      | High                        | None             |
| 11       | High                     | High                        | None             |
| 12       | High                     | Low                         | Low              |
| 13       | Low                      | Low                         | Low              |

| Receptor | Magnitude of Impact      |                             |                  |
|----------|--------------------------|-----------------------------|------------------|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |
| 14       | High                     | High                        | None             |
| 15       | High                     | High                        | None             |
| 16       | High                     | High                        | None             |
| 17       | Low                      | Low                         | Low              |
| 18       | Low                      | Low                         | Low              |
| 19       | Low                      | Low                         | Low              |
| 20       | High                     | Low                         | Low              |
| 21       | High                     | Low                         | Low              |
| 22       | High                     | Low                         | Low              |
| 23       | High                     | Low                         | Low              |
| 24       | High                     | Low                         | Low              |
| 25       | High                     | Low                         | None             |
| 26       | High                     | Low                         | None             |
| 27       | High                     | High                        | None             |
| 28       | High                     | High                        | None             |
| 29       | High                     | High                        | None             |
| 30       | High                     | High                        | None             |
| 31       | High                     | High                        | None             |
| 32       | High                     | High                        | None             |
| 33       | High                     | Low                         | None             |
| 34       | High                     | High                        | None             |
| 35       | High                     | High                        | None             |
| 36       | High                     | High                        | None             |
| 37       | High                     | High                        | None             |
| 38       | High                     | High                        | None             |

| Receptor | Magnitude of Impact      |                             |                  |
|----------|--------------------------|-----------------------------|------------------|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |
| 39       | Low                      | None                        | None             |
| 40       | Low                      | None                        | None             |
| 41       | Low                      | None                        | None             |
| 42       | Low                      | None                        | None             |
| 43       | Low                      | None                        | None             |
| 44       | High                     | None                        | None             |
| 45       | High                     | Low                         | None             |
| 46       | High                     | Low                         | None             |
| 47       | High                     | None                        | None             |
| 48       | High                     | None                        | None             |
| 49       | High                     | None                        | None             |
| 50       | High                     | None                        | None             |
| 51       | High                     | None                        | None             |
| 52       | Low                      | None                        | None             |
| 53       | Low                      | None                        | None             |
| 54       | Low                      | High                        | None             |
| 55       | Low                      | High                        | None             |
| 56       | High                     | High                        | None             |
| 57       | High                     | High                        | None             |
| 58       | Low                      | High                        | None             |
| 59       | High                     | High                        | None             |
| 60       | High                     | High                        | None             |
| 61       | High                     | High                        | None             |
| 62       | Low                      | High                        | None             |
| 63       | Low                      | None                        | None             |

| Receptor | Magnitude of Impact      |                             |                  |
|----------|--------------------------|-----------------------------|------------------|
|          | After Geometric Analysis | After Visibility assessment | Residual Impacts |
| 64       | Low                      | None                        | None             |
| 65       | High                     | High                        | None             |
| 66       | High                     | High                        | None             |
| 67       | High                     | High                        | None             |
| 68       | High                     | High                        | None             |
| 69       | High                     | High                        | None             |
| 70       | High                     | High                        | None             |
| 71       | High                     | High                        | None             |
| 72       | High                     | None                        | None             |
| 73       | High                     | None                        | None             |
| 74       | High                     | None                        | None             |
| 75       | High                     | Low                         | None             |
| 76       | High                     | None                        | None             |
| 77       | High                     | None                        | None             |
| 78       | High                     | None                        | None             |
| 79       | High                     | None                        | None             |

7.3. Table 2626, Table 27, Table 28 and Table 29 show the overall impacts for all residential, road and rail receptors.

Table 2626: Solar Reflection: Receptors

| Magnitude | Theoretical Visibility | Actual Visibility (No Mitigation) | Actual Visibility with Mitigation |
|-----------|------------------------|-----------------------------------|-----------------------------------|
| High      | 48                     | 11                                | 0                                 |
| Medium    | 19                     | 3                                 | 0                                 |
| Low       | 111                    | 44                                | 36                                |
| None      | 50                     | 170                               | 192                               |

- **High** – Solar reflections impacts of over 30 hours per year or over 30 minutes per day
- **Medium** - Solar reflections impacts between 20 and 30 hours per year or between 20 minutes and 30 minutes per day
- **Low** - Solar reflections impacts between 0 and 20 hours per year or between 0 minutes and 20 minutes per day
- **None** - Effects not geometrically possible or no visibility of reflective surfaces likely due to high levels of intervening screening

Table 2727: Solar Reflection: Road Receptors

| Magnitude                                                                                                                                                                                                                                                                                                                                                                                                                                             | Theoretical Visibility | Actual Visibility (No Mitigation) | Actual Visibility with Mitigation |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------|-----------------------------------|
| High                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 156                    | 30                                | 0                                 |
| Low                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 59                     | 0                                 | 0                                 |
| None                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2                      | 187                               | 217                               |
| <ul style="list-style-type: none"> <li>• <b>High</b> - Solar reflections impacts with yellow glare (potential for after-image).</li> <li>• <b>Low</b> - Solar reflections impacts with only green glare (low potential for after-image)</li> <li>• <b>None</b> - Effects not geometrically possible or no visibility of reflective surfaces likely due to high levels of intervening screening or being outside the drivers' field of view</li> </ul> |                        |                                   |                                   |

Table 2828: Solar Reflection: Rail Receptors

| Magnitude                                                                                                                                                                                                                                                                                                                                                                                                                                             | Theoretical Visibility | Actual Visibility (No Mitigation) | Actual Visibility with Mitigation |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|-----------------------------------|-----------------------------------|
| High                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 5                      | 0                                 | 0                                 |
| Low                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8                      | 0                                 | 0                                 |
| None                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0                      | 13                                | 13                                |
| <ul style="list-style-type: none"> <li>• <b>High</b> - Solar reflections impacts with yellow glare (potential for after-image).</li> <li>• <b>Low</b> - Solar reflections impacts with only green glare (low potential for after-image)</li> <li>• <b>None</b> - Effects not geometrically possible or no visibility of reflective surfaces likely due to high levels of intervening screening or being outside the drivers' field of view</li> </ul> |                        |                                   |                                   |

Table 2929: Solar Reflection: Bridleway Receptors

| Magnitude | Theoretical Visibility | Actual Visibility (No Mitigation) | Actual Visibility with Mitigation |
|-----------|------------------------|-----------------------------------|-----------------------------------|
| High      | 65                     | 40                                | 0                                 |
| Low       | 14                     | 15                                | 10                                |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                   |   |    |    |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|----|----|
| None                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0 | 24 | 69 |
| <ul style="list-style-type: none"><li>• <b>High</b> - Solar reflections impacts with yellow glare (potential for after-image).</li><li>• <b>Low</b> - Solar reflections impacts with only green glare (low potential for after-image)</li><li>• <b>None</b> - Effects not geometrically possible or no visibility of reflective surfaces likely due to high levels of intervening screening or being outside the drivers' field of view</li></ul> |   |    |    |

## 8. SUMMARY

8.1. This assessment considers the potential impacts on ground-based receptors such as roads, rail and residential dwellings as well as aviation assets from Fosse Green Energy project (the 'Proposed Development'). A 1km study area around the Principal Site is considered adequate for the assessment of ground-based (residential, road, rail and bridleway) receptors, whilst a 30km study area is chosen for aviation receptors. Within the ground-based study areas of the Principal Site, there are 238 residential receptors, including 26 residential areas, 243 road receptors, 20 rail receptors and 82 bridleway receptors that were considered. As per the methodology section, where there are several residential receptors within close proximity, a representative dwelling or dwellings is/are chosen for full assessment as the impacts will not vary to any significant degree. Where small groups of receptors have been evident, the receptors on either end of the group have been assessed in detail. 10 residential receptors, including four residential areas, 26 road receptors, seven rail receptors and three bridleway receptors were dismissed as they are located within the no reflection zones (see paragraph 5.1 – 5.3). 35 aerodromes are located within the 30km study area; five of which, RAF Waddington, Peacocks Farm, South Hykeham Airfield, South Scarle Airfield and Blackmoor Farm required detailed assessments as the Principal Site is located within their respective safeguarding buffer zones. The other 30 aerodromes did not require a detailed assessment due to their size and/or orientation in relation to the Principal Site.

8.2. Geometric analysis was conducted at 228 individual residential receptors, including 22 residential areas, 217 road receptors, 13 rail receptors and 79 bridleway receptors. Also, geometric analysis was conducted at 12 runway approach paths, two circuit paths and one Air Traffic Control Tower (ATCT) at RAF Waddington, Peacocks Farm, South Hykeham Airfield, South Scarle Airfield and Blackmoor Farm.

8.3. The assessment concludes that:

- a. Solar reflections are possible at 178 of the 238 residential receptors assessed within the 1km study area. The initial bald-earth scenario identified potential impacts as **High** at 48 receptors, including six residential areas, **Medium** at 19 receptors, including two residential areas, **Low** at 111 receptors, including 10 residential areas, and **None** at the remaining 50 receptors, including three residential area. Upon reviewing the actual visibility of the receptors, impacts remain **High** at 11 receptors, including one residential area, and **Medium** at three receptors, including one residential area, and reduce to **Low** at 44 receptors, including eight residential areas, and to **None** at all remaining receptors, including 12 residential areas. Once mitigation measures were considered, impacts reduce to **Low** at 36 receptors and to **None** at all remaining receptors. Therefore, overall impacts on residential receptors are considered to be **Low**.

- b. Solar reflections are possible at 215 of the 217 road receptors assessed within the 1km study area. The initial bald-earth scenario identified potential impacts as **High** at 156 receptors, **Low** at 59 receptors and **None** at the remaining two receptors. Upon reviewing the actual visibility of the receptors, glint and glare impacts remain **High** at 30 receptors and reduce **None** for all remaining road receptors. Once mitigation measures were considered, impacts reduce to **None** at all receptors. Therefore, overall impacts are considered to be **None**.
- c. Solar reflections are possible at all the 13 rail receptors assessed within the 1km study area. The initial bald-earth scenario identified potential impacts as **High** at five receptors and **Low** at eight receptors. Upon reviewing the actual visibility of the receptors, glint and glare impacts reduce to **None** for all rail receptors. Therefore, overall impacts on rail receptors are considered to be **None**.
- d. Solar reflections are possible at all the 79 bridleway receptors assessed within the 1km study area. The initial bald-earth scenario identified potential impacts as **High** at 65 receptors and **Low** at 14 receptors. Upon reviewing the actual visibility of the receptors, glint and glare impacts remain **High** at 40 receptors and reduce to **Low** at 15 receptors and to **None** at 24 receptors. Once mitigation measures were considered, impacts reduce to **Low** at 10 receptors and to **None** at all remaining receptors. Therefore, overall impacts on bridleway receptors are considered to be **Low**.
- e. 12 runway approach paths and one ATCT were assessed in detail at RAF Waddington, Peacocks Farm, South Hykeham Airfield, South Scarle Airfield and Blackmoor Farm. Only green glare impacts were predicted for the Runway 20 approach path, eastern circuit path and ATCT at RAF Waddington, the Runway 10 approach path at South Hykeham Airfield and the Runway 06 and 24 approach paths at Blackmoor Farm. Green glare and yellow glare impacts were predicted for the western circuit path at RAF Waddington Runway 08 and 24 approach paths at Peacocks Farm, the Runway 28 and 31 approach paths at South Hykeham Airfield and the Runway 10 approach path at South Scarle Airfield. Green glare is an **acceptable impact** upon runways according to FAA guidance. Upon reviewing the ground elevation profile between the ATCT at RAF Waddington and the Principal Site, the impacts upon the ATCT reduce to **None**. Upon inspection of the type of aircraft using Peacocks Farm and South Hykeham Airfield, time of impact, position of the sun and use of existing pilot mitigation strategies when landing in the direction of the sun, as well as the current UK and US guidance, all impacts at Peacocks Farm, South Hykeham Airfield

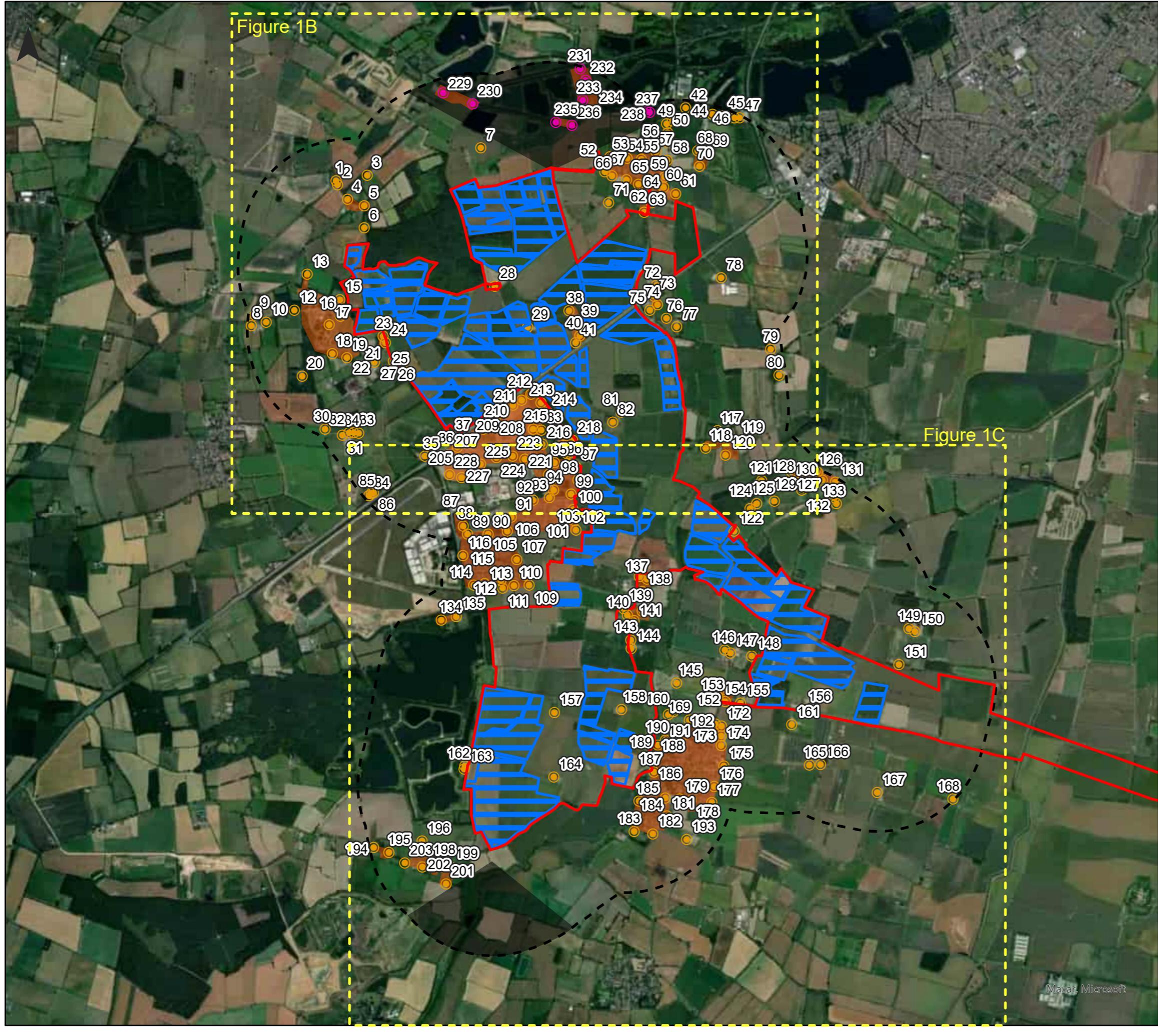
and South Scarle Airfield can be deemed **acceptable**. Overall impacts on aviation assets are **acceptable** and **Not Significant**.

- 8.4. **Mitigation** is required due to the impacts found for Residential Receptors 97, 98, 101, 102, 148, 155, 157 – 160, 196 and 197, Road Receptors 13 - 16, 45, 78 - 80, 82 – 84, 98 – 104, 113, 144 - 148 and 177 - 182 and Bridleway Receptors 2 – 6, 8 – 11, 14 – 16, 27 – 38, 54 – 62 and 65 – 71 being **High** or **Medium**. The recommended mitigation measures will also screen the **Low impact** views from Residential Receptors 23, 28, 38 – 41, 81, 82, 100, 156, 161 and 164 and Bridleway Receptors 25, 26, 45, 46 and 75. This includes the hedges and trees along panel boundaries, field boundaries and bridleway boundaries as shown in the **Figure 7.15-1: Landscape Masterplan**, presented within the **Framework LEMP [EN010154/APP/7.15** being managed to deliver a minimum height at least the same as the upper edge of the panels, which is currently proposed to be a maximum 3.5m..
- 8.5. The effects of glint and glare and their impact on local receptors has been analysed in detail and there is predicted to be **Low** impacts at nine runway approach paths, whilst the remaining aviation receptors are predicted to have **No Impacts**. Impacts upon ground-based receptors are predicted to be **Low** or **None**. Therefore, overall impacts are **Not Significant**.

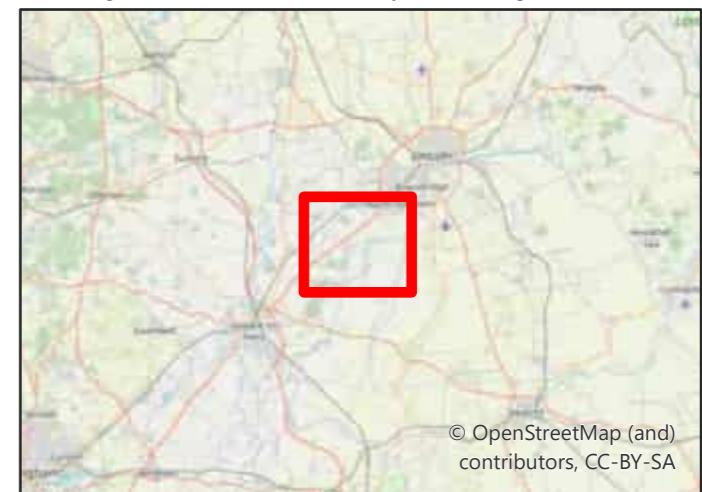
## Abbreviations

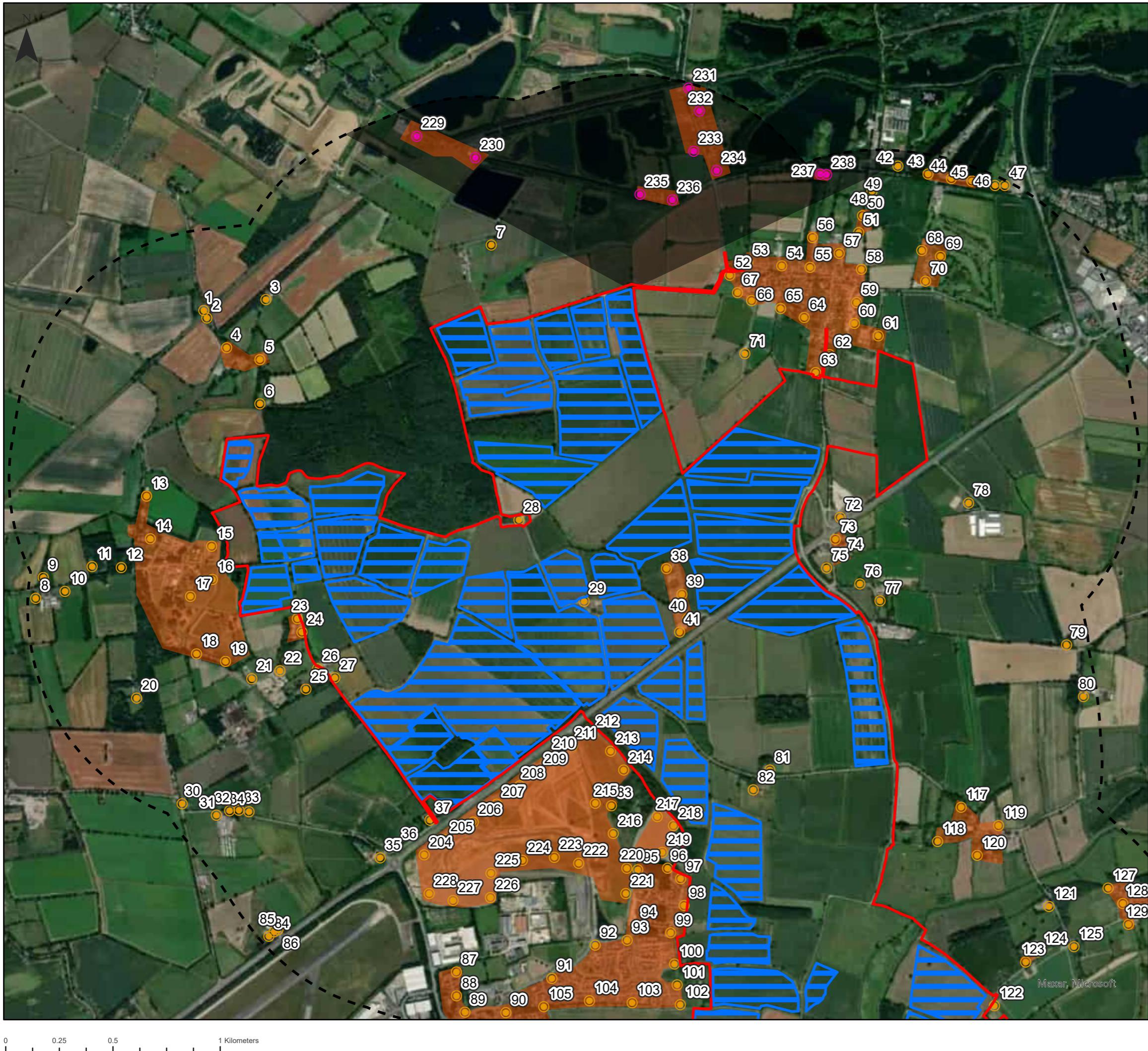
|        |                                                         |
|--------|---------------------------------------------------------|
| AGL    | Above Ground Level                                      |
| ALP    | Approved Layout Plan                                    |
| ANO    | Air Navigation Order                                    |
| ARC    | Anti-Reflective Coating                                 |
| ATCT   | Air Traffic Control Tower                               |
| BST    | British Summer Time                                     |
| BESS   | Battery Energy Storage System                           |
| CAA    | Civil Aviation Authority                                |
| CAP738 | CAA-CAP738: Safeguarding of Aerodromes                  |
| CLLP   | Central Lincolnshire Local Plan                         |
| CLJSPC | Central Lincolnshire Joint Strategic Planning Committee |
| DCO    | Development Consent Order                               |
| FAA    | Federal Aviation Administration                         |
| GMT    | Greenwich Mean Time                                     |
| GIS    | Geographic Information System                           |
| HFOV   | Horizontal Field of View                                |
| kV     | Kilovolt                                                |
| LEMP   | Landscape and Ecological Management Plan                |
| MW     | Megawatt                                                |
| NPPG   | National Planning Policy Guidance                       |
| PV     | Photovoltaic                                            |
| SGHAT  | Solar Glare Hazard Analysis Tool                        |
| SK     | Grid reference prefix (used in British National Grid)   |
| SPV    | Solar Photovoltaic                                      |
| STA    | Solar Trade Association                                 |
| UTC    | Coordinated Universal Time                              |
| VFOV   | Vertical Field of View                                  |

## 9. APPENDICES


## APPENDIX A: FIGURES

- a. Figure 1A: Residential Receptor Map Overall
- b. Figure 1B: Residential Receptor Map Sheet 1B
- c. Figure 1C: Residential Receptor Map Sheet 1C
- d. Figure 2A: Road Receptor Map
- e. Figure 2B: Road Receptor Map Sheet 2B
- f. Figure 2C: Road Receptor Map Sheet 2C
- g. Figure 3: Rail receptor Map
- h. Figure 4A: Bridleway Receptor Map
- i. Figure 4B: Bridleway Receptor Map Sheet 4B
- j. Figure 4C: Bridleway Receptor Map Sheet 4C
- k. Figure 5: Site Layout
- l. Figure 6: Panel Area Labels
- m. Figure 7: RAF Waddington Aerodrome Chart


Fosse Green Solar Farm  
Residential Based Receptors  
Figure 1A


Key

- Development Boundary
- Panel Boundary
- 1km Study Area
- Glare Not Possible at Receptor
- Glare Possible at Receptor
- Residential Area
- Non-Reflection Zone

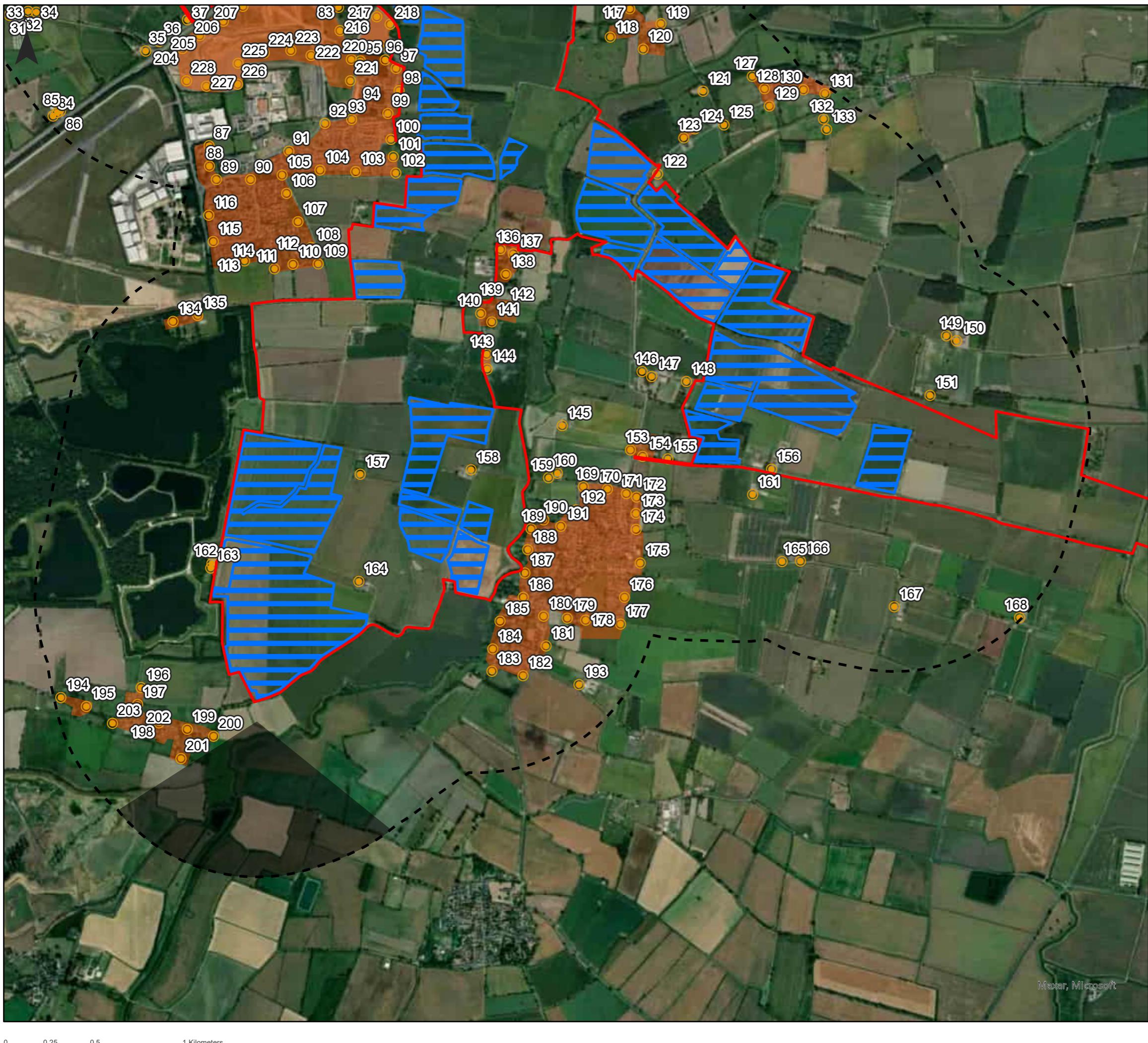


Neo Office Address:  
Wright Business Centre, 1 Lonmay Road, Glasgow, G33 4EL

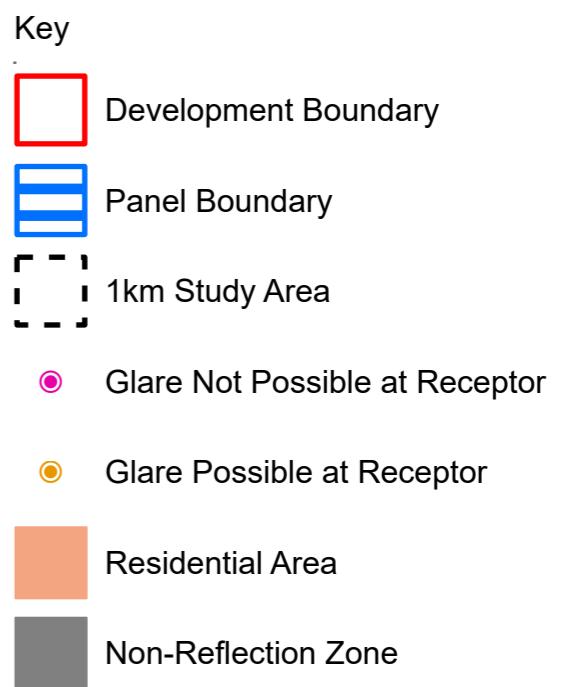


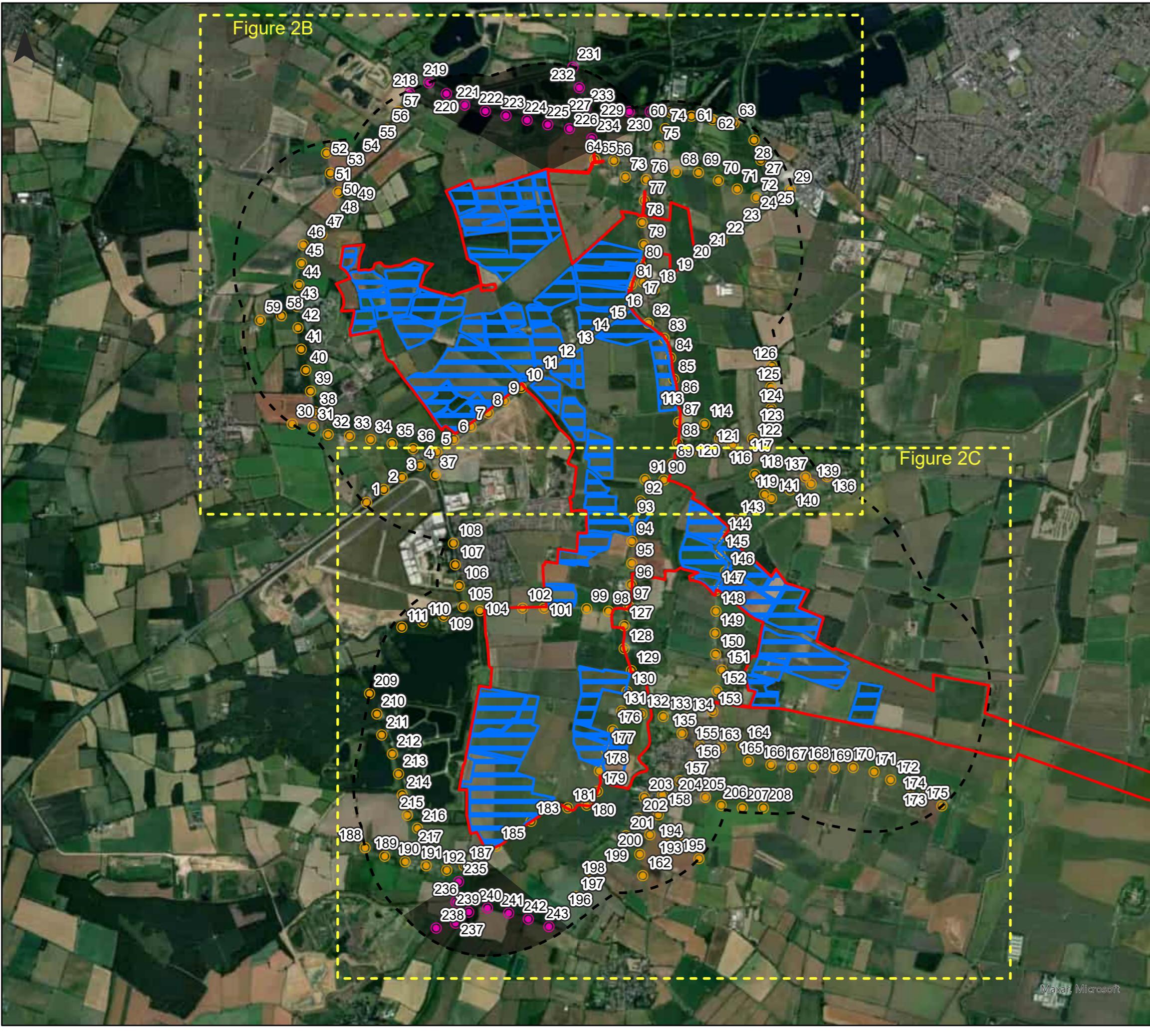


## Fosse Green Solar Farm Residential Based Receptors Figure 1B


## Key

- Development Boundary
- Panel Boundary
- 1km Study Area
- Glare Not Possible at Receptor
- Glare Possible at Receptor
- Residential Area
- Non-Reflection Zone


Neo Office Address:  
Wright Business Centre, 1 Lonmay Road, Glasgow, G33 4EL

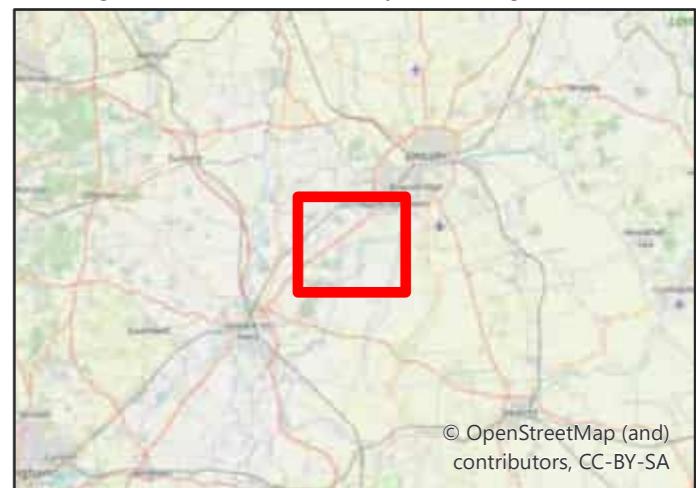



Date: 07/02/2025  
Drawn By: David Thomson  
Scale (A3): 1:17,500  
Drawing No: NEO01357/0021/D



Fosse Green Solar Farm  
Residential Based Receptors  
Figure 1C






Fosse Green Solar Farm  
Road Based Receptors  
Figure 2A

Key

- Development Boundary
- Panel Boundary
- 1km Study Area
- Glare Not Possible at Receptor
- Glare Possible at Receptor
- Non-Reflection Zone

Neo Office Address:  
Wright Business Centre, 1 Lonmay Road, Glasgow, G33 4EL

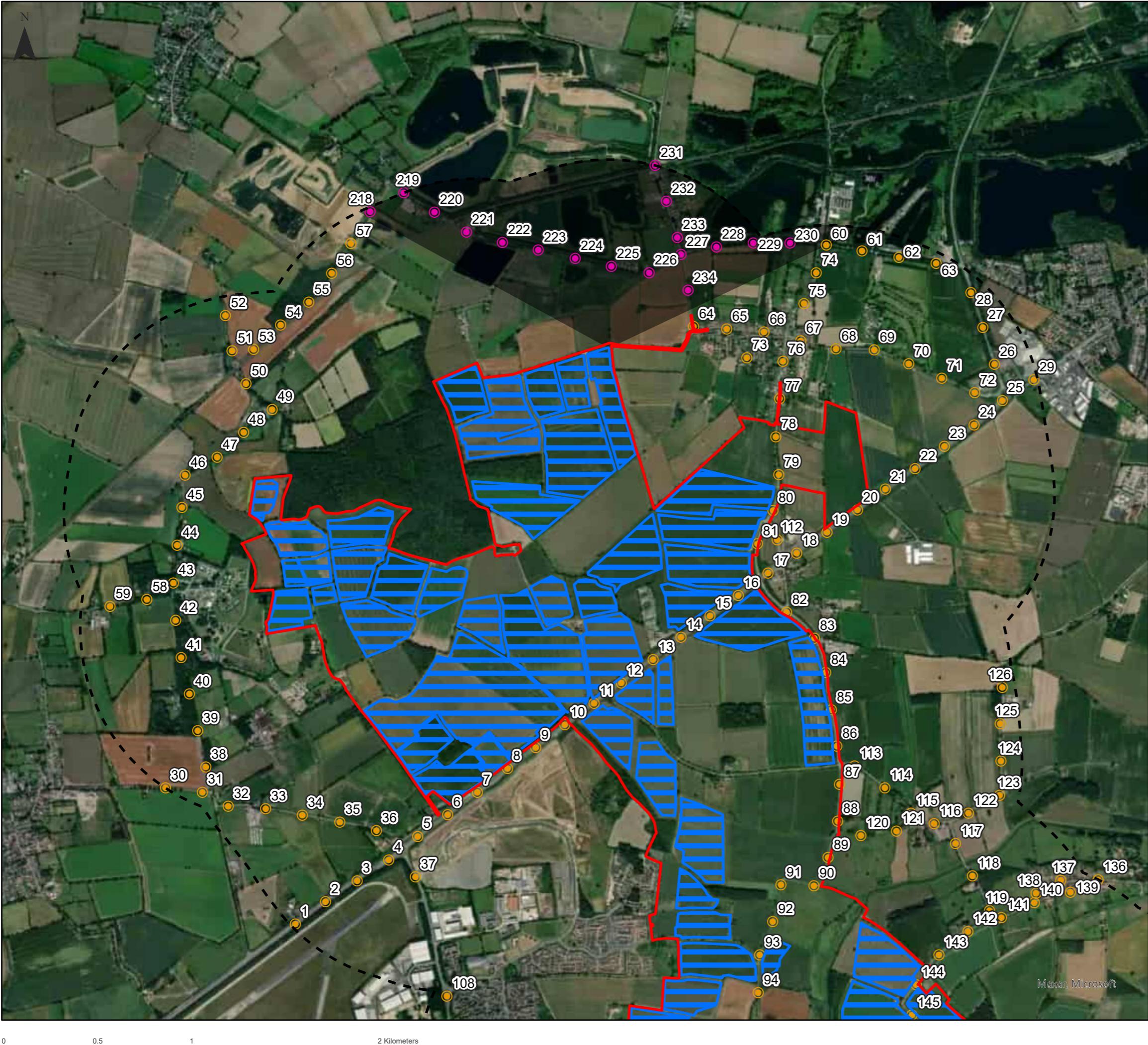


Fosse Green Solar Farm  
Road Based Receptors  
Figure 2B

Key

Development Boundary

Panel Boundary


1km Study Area

Glare Not Possible at Receptor

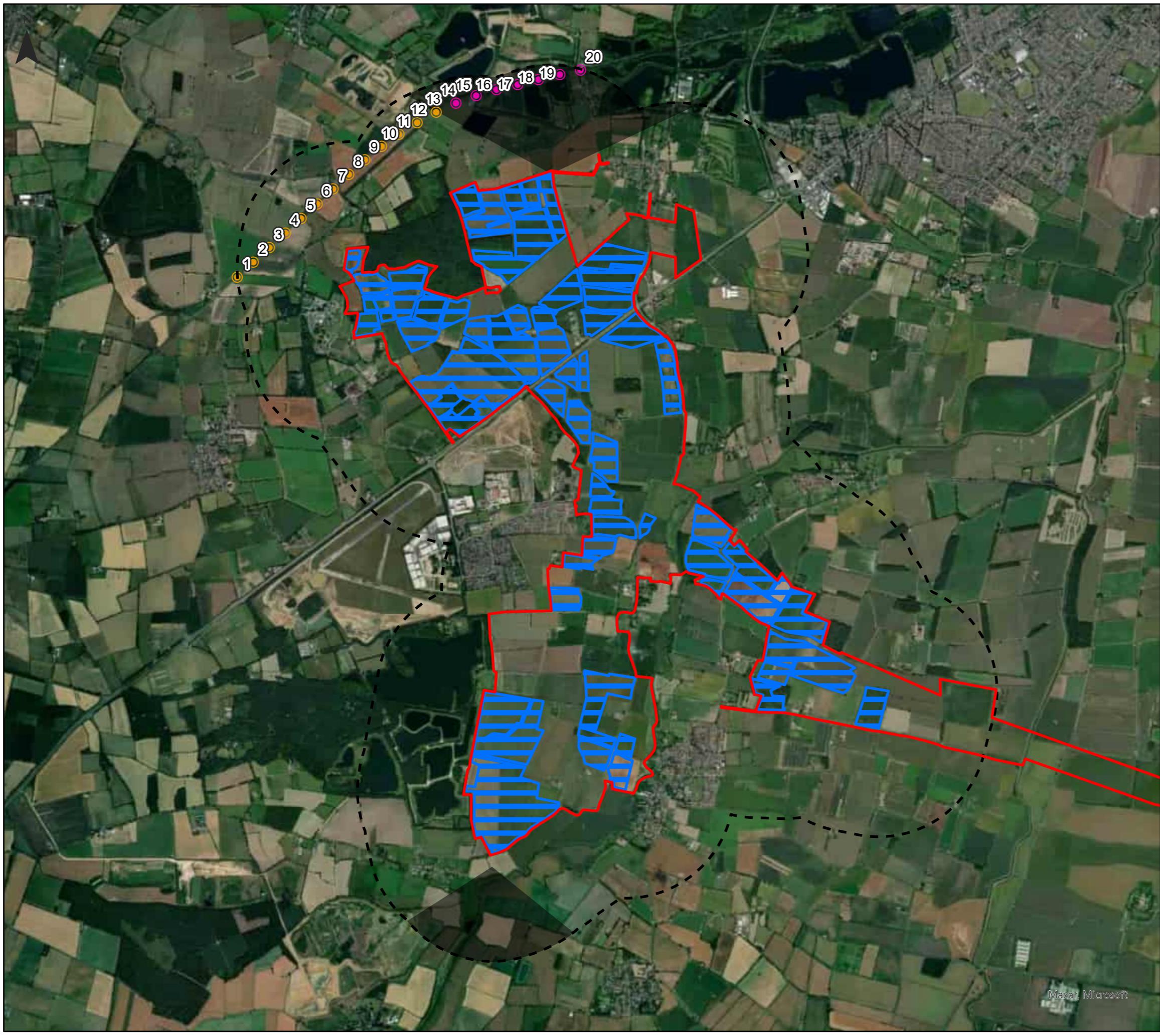
Glare Possible at Receptor

Non-Reflection Zone

Neo Office Address:  
Wright Business Centre, 1 Lonmay Road, Glasgow, G33 4EL





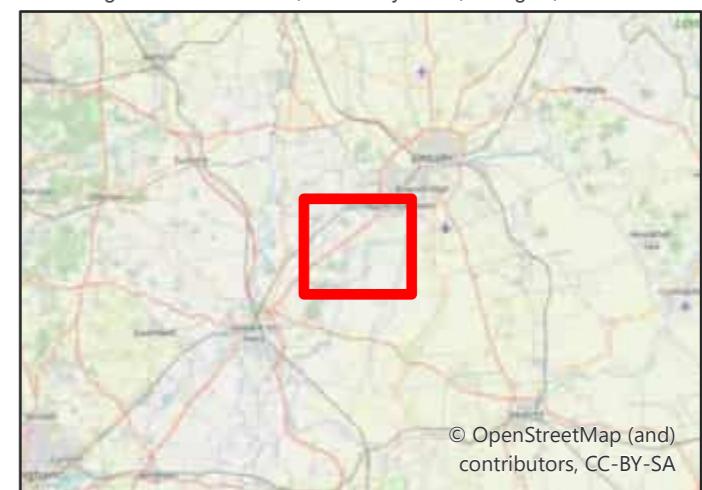

Fosse Green Solar Farm  
Road Based Receptors  
Figure 2C

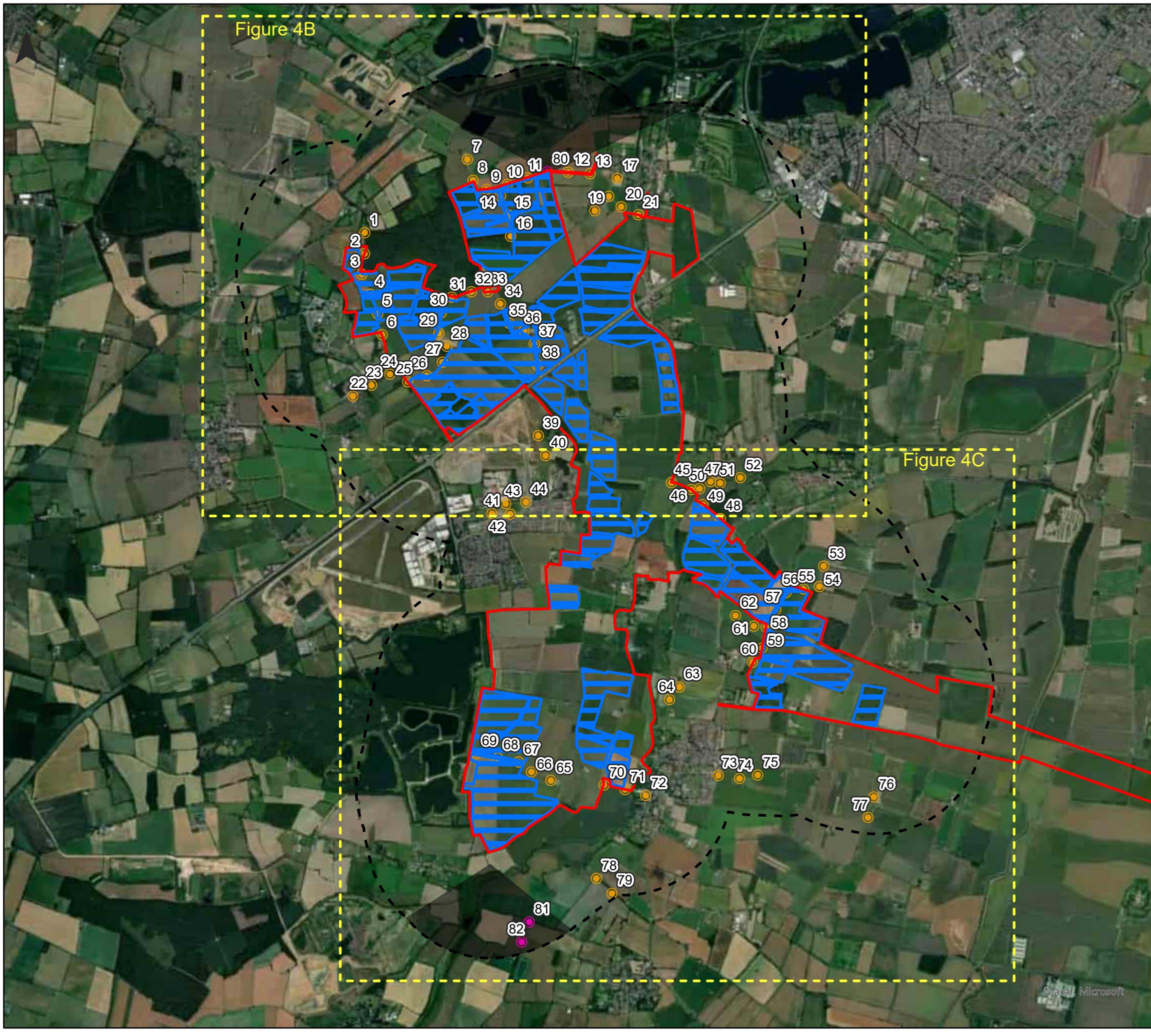
Key

- Development Boundary
- Panel Boundary
- 1km Study Area
- Glare Not Possible at Receptor
- Glare Possible at Receptor
- Non-Reflection Zone

Neo Office Address:  
Wright Business Centre, 1 Lonmay Road, Glasgow, G33 4EL





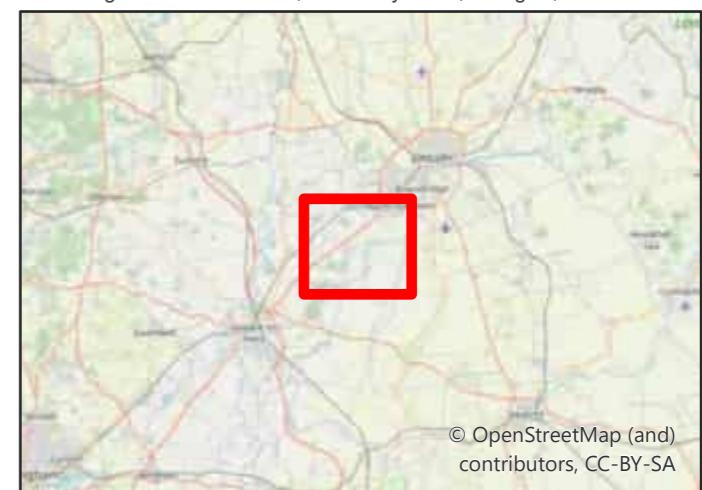


Fosse Green Solar Farm  
Rail Based Receptors  
Figure 3

Key

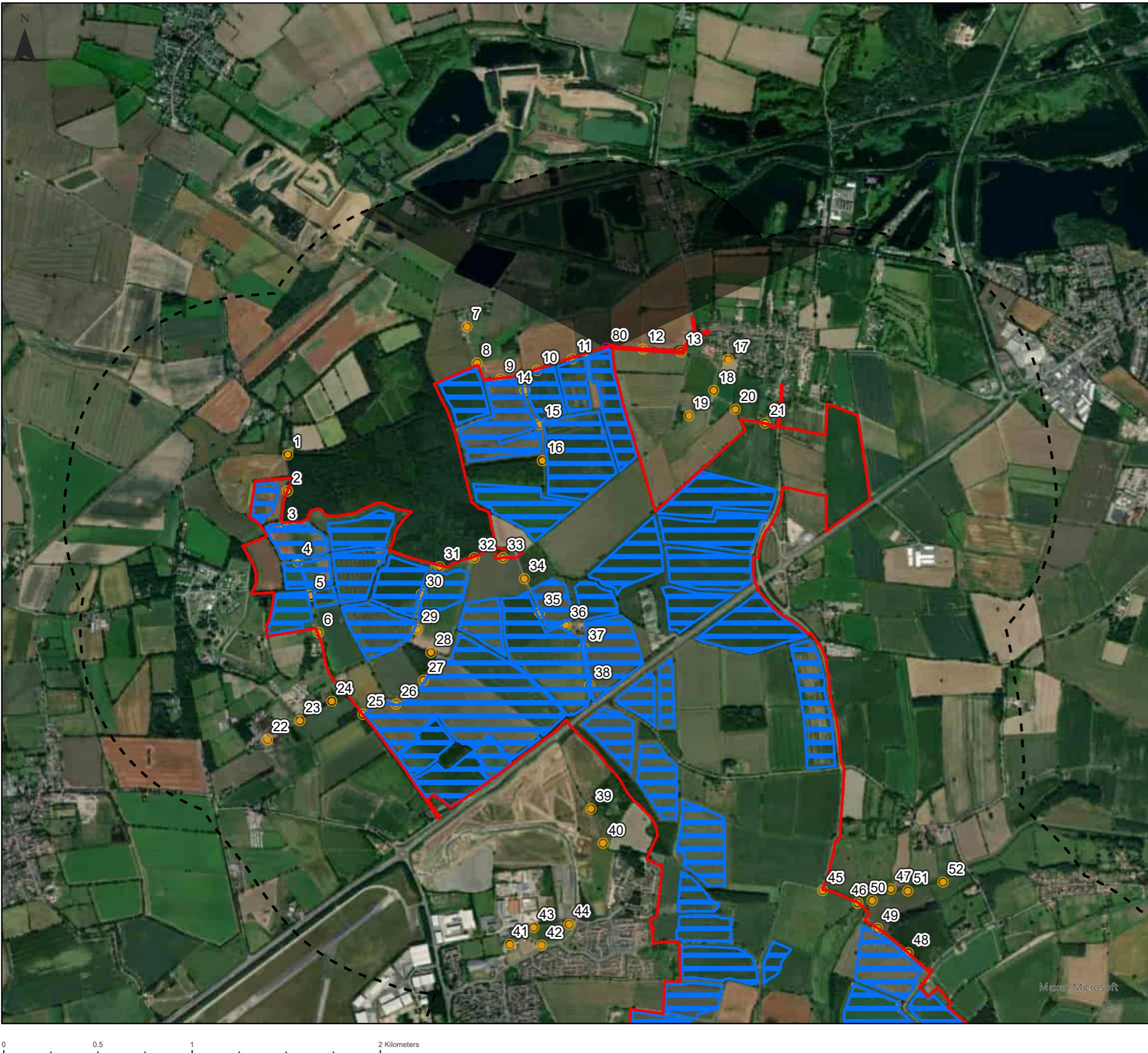
- Development Boundary
- Panel Boundary
- 1km Study Area
- Glare Not Possible at Receptor
- Glare Possible at Receptor
- Non-Reflection Zone

Neo Office Address:  
Wright Business Centre, 1 Lonmay Road, Glasgow, G33 4EL






Fosse Green Solar Farm  
Bridleway Based Receptors  
Figure 4A

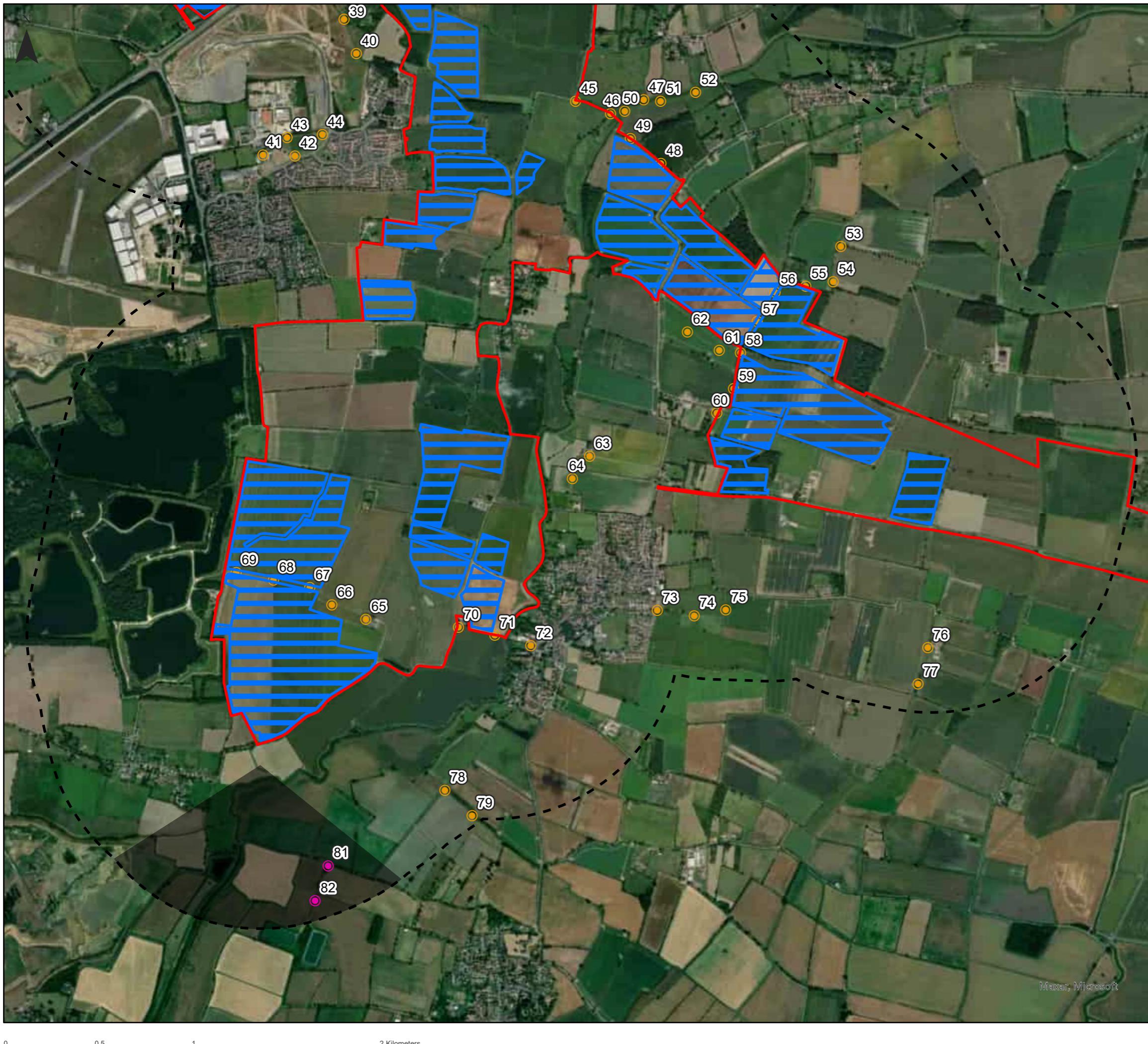

Key

- Development Boundary
- Panel Boundary
- 1km Study Area
- Glare Not Possible at Receptor
- Glare Possible at Receptor
- Non-Reflection Zone

Neo Office Address:  
Wright Business Centre, 1 Lonmay Road, Glasgow, G33 4EL



Date: 07/02/2025  
Drawn By: David Thomson  
Scale (A3): 1:35,000  
Drawing No: NEO01357/008I/D



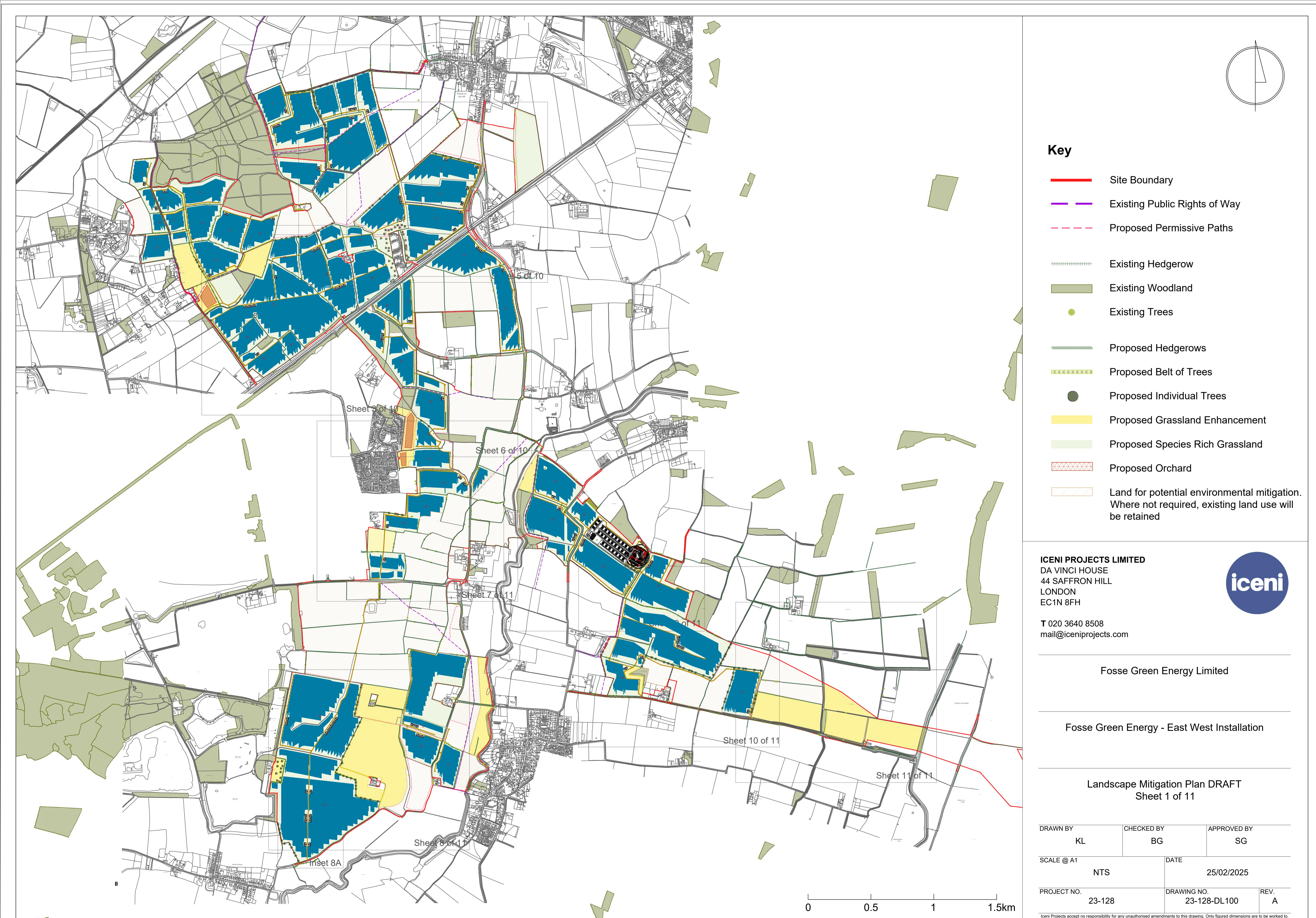

Fosse Green Solar Farm  
Bridleway Based Receptors  
Figure 4B

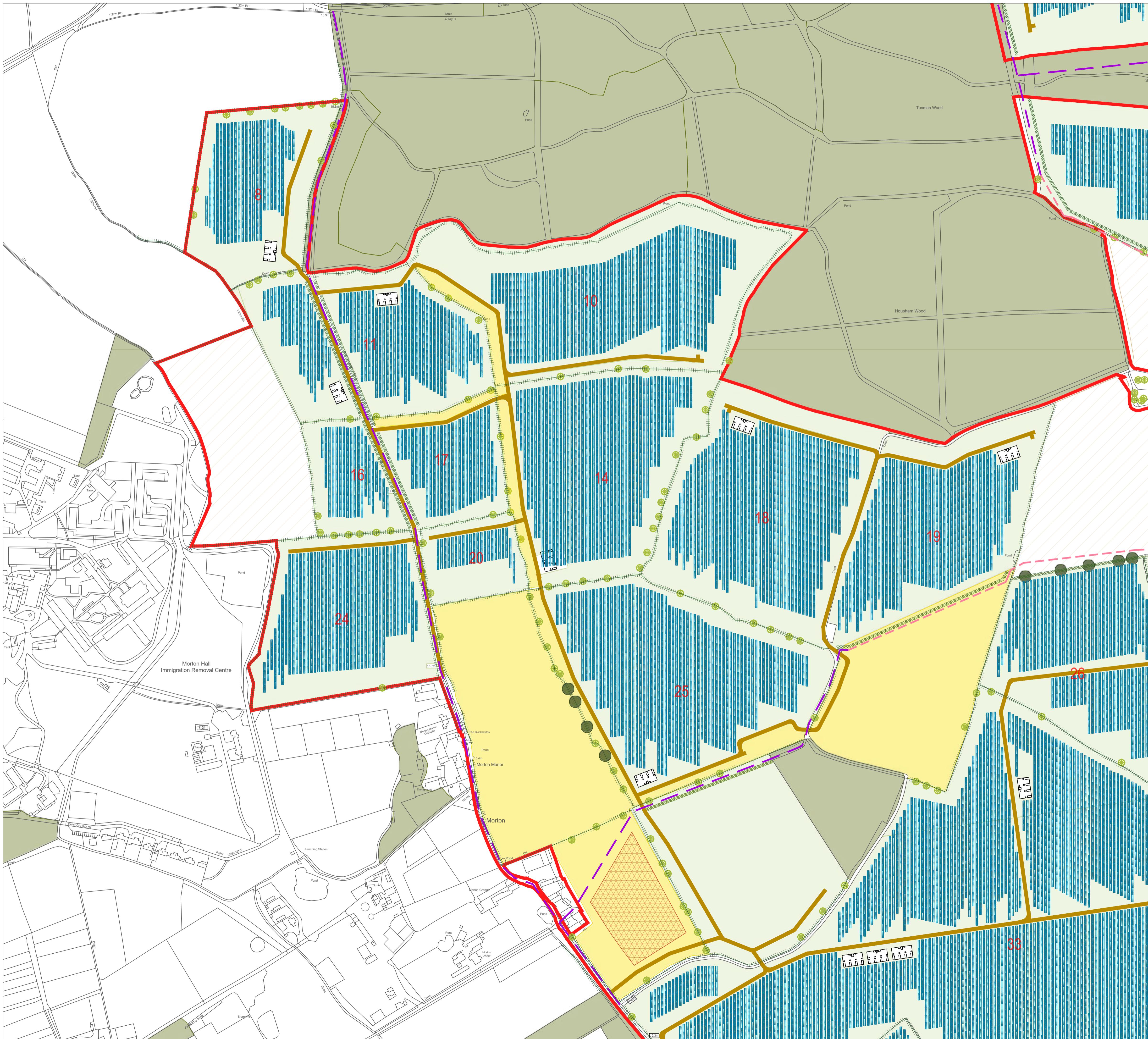
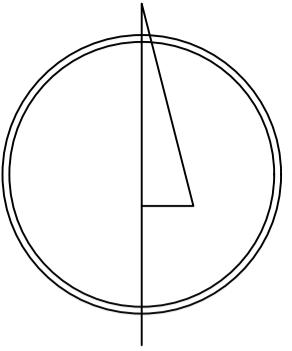
Key

- Development Boundary
- Panel Boundary
- 1km Study Area
- Glare Not Possible at Receptor
- Glare Possible at Receptor
- Non-Reflection Zone






Fosse Green Solar Farm  
Bridleway Based Receptors  
Figure 4C



Key

- Development Boundary
- Panel Boundary
- 1km Study Area
- Glare Not Possible at Receptor
- Glare Possible at Receptor
- Non-Reflection Zone

Neo Office Address:  
Wright Business Centre, 1 Lonmay Road, Glasgow, G33 4EL







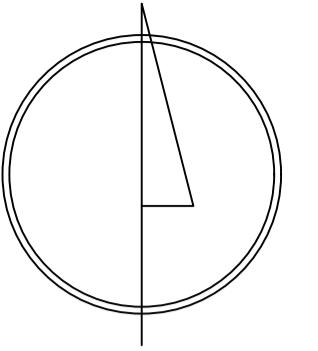
## Key

- Site Boundary
- Existing Public Rights of Way
- Proposed Permissive Paths
- Existing Hedgerow
- Existing Woodland
- Existing Trees
- Proposed Hedgerows
- Proposed Belt of Trees
- Proposed Individual Trees
- Proposed Grassland Enhancement
- Proposed Species Rich Grassland
- Proposed Orchard
- Land for potential environmental mitigation. Where not required, existing land use will be retained

ICENI PROJECTS LIMITED  
DA VINCI HOUSE  
44 SAFFRON HILL  
LONDON  
EC1N 8FH

T 020 3640 8508  
mail@iceniprojects.com




Fosse Green Energy Limited

Fosse Green Energy - East West Installation

Landscape Mitigation Plan DRAFT  
Sheet 2 of 11

| DRAWN BY    | CHECKED BY   | APPROVED BY        |
|-------------|--------------|--------------------|
| KL          | BG           | SG                 |
| SCALE @ A1  | 1:2500       | DATE<br>25/02/2025 |
| PROJECT NO. | DRAWING NO.  | REV.               |
| 23-128      | 23-128-DL100 | A                  |

iceni Projects accept no responsibility for any unauthorised amendments to this drawing. Only figured dimensions are to be worked to.



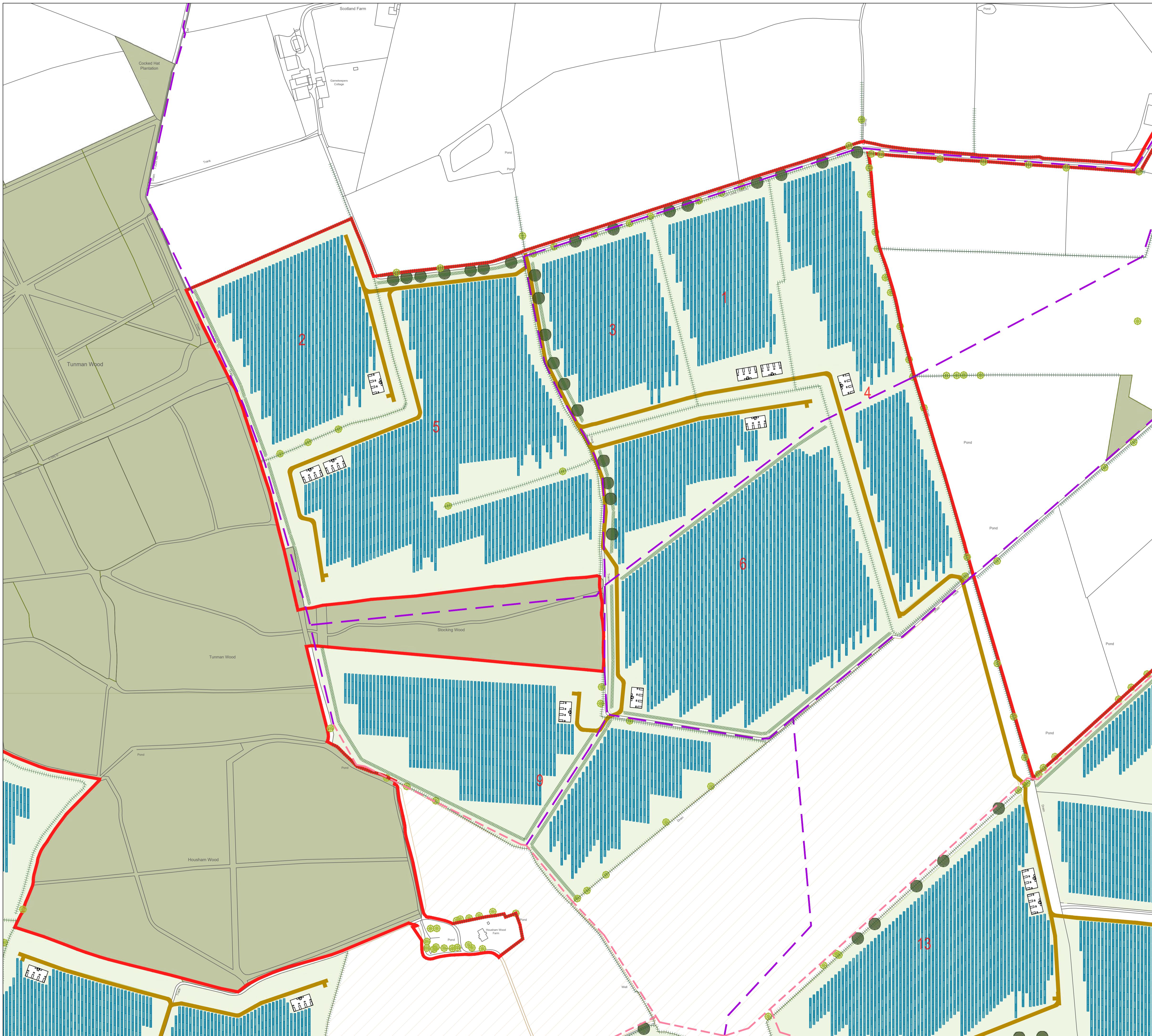
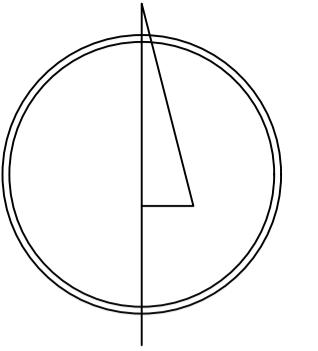
## Key

- Site Boundary
- Existing Public Rights of Way
- Proposed Permissive Paths
- Existing Hedgerow
- Existing Woodland
- Existing Trees
- Proposed Hedgerows
- Proposed Belt of Trees
- Proposed Individual Trees
- Proposed Grassland Enhancement
- Proposed Species Rich Grassland
- Proposed Orchard
- Land for potential environmental mitigation. Where not required, existing land use will be retained

ICENI PROJECTS LIMITED  
DA VINCI HOUSE  
44 SAFFRON HILL  
LONDON  
EC1N 8FH

T 020 3640 8508  
mail@iceniprojects.com





Fosse Green Energy Limited

Fosse Green Energy - East West Installation

Landscape Mitigation Plan DRAFT  
Sheet 3 of 11

| DRAWN BY    | CHECKED BY   | APPROVED BY        |
|-------------|--------------|--------------------|
| KL          | BG           | SG                 |
| SCALE @ A1  | 1:2500       | DATE<br>25/02/2025 |
| PROJECT NO. | DRAWING NO.  | REV.               |
| 23-128      | 23-128-DL100 | A                  |

iceni Projects accept no responsibility for any unauthorised amendments to this drawing. Only figured dimensions are to be worked to.



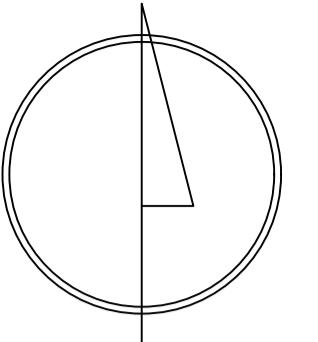
## Key

- Site Boundary
- Existing Public Rights of Way
- Proposed Permissive Paths
- Existing Hedgerow
- Existing Woodland
- Existing Trees
- Proposed Hedgerows
- Proposed Belt of Trees
- Proposed Individual Trees
- Proposed Grassland Enhancement
- Proposed Species Rich Grassland
- Proposed Orchard
- Land for potential environmental mitigation. Where not required, existing land use will be retained.

**ICENI PROJECTS LIMITED**  
DA VINCI HOUSE  
44 SAFFRON HILL  
LONDON  
EC1N 8FH

T 020 3640 8508  
mail@iceniprojects.com




Fosse Green Energy Limited

Fosse Green Energy - East West Installation

Landscape Mitigation Plan DRAFT  
Sheet 4 of 11

| DRAWN BY    | CHECKED BY   | APPROVED BY |
|-------------|--------------|-------------|
| KL          | BG           | SG          |
| SCALE @ A1  | 1:2500       | DATE        |
|             |              | 25/02/2025  |
| PROJECT NO. | DRAWING NO.  | REV.        |
| 23-128      | 23-128-DL100 | A           |

iceni Projects accept no responsibility for any unauthorised amendments to this drawing. Only figured dimensions are to be worked to.



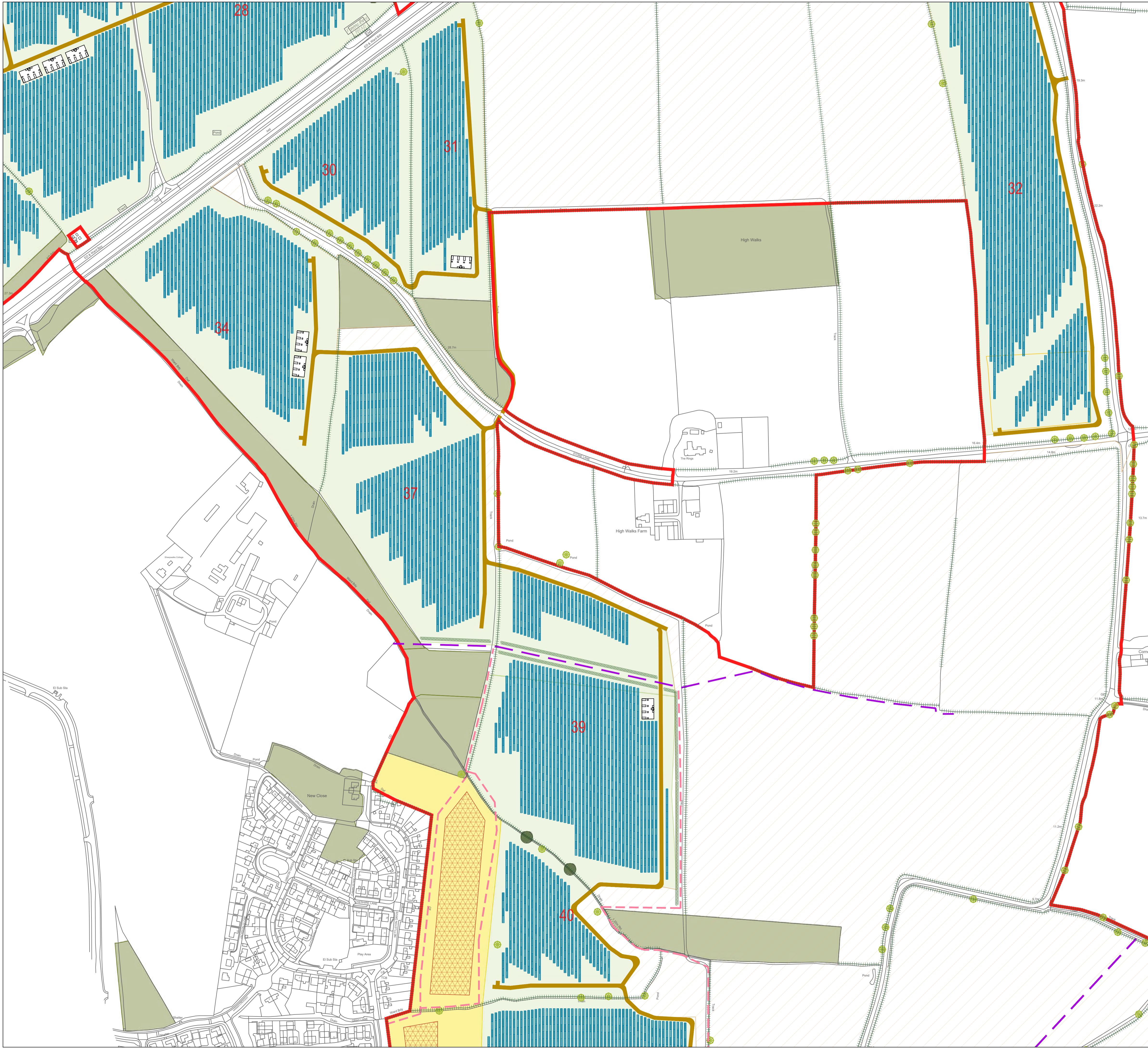
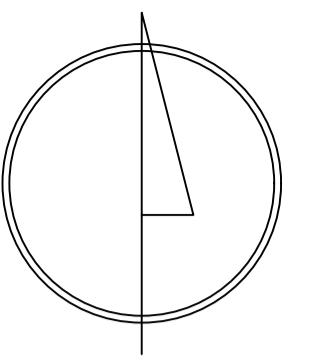
## Key

- Site Boundary
- Existing Public Rights of Way
- Proposed Permissive Paths
- Existing Hedgerow
- Existing Woodland
- Existing Trees
- Proposed Hedgerows
- Proposed Belt of Trees
- Proposed Individual Trees
- Proposed Grassland Enhancement
- Proposed Species Rich Grassland
- Proposed Orchard
- Land for potential environmental mitigation. Where not required, existing land use will be retained.

ICENI PROJECTS LIMITED  
DA VINCI HOUSE  
44 SAFFRON HILL  
LONDON  
EC1N 8FH

T 020 3640 8508  
mail@iceniprojects.com





Fosse Green Energy Limited

Fosse Green Energy - East West Installation

Landscape Mitigation Plan DRAFT  
Sheet 5 of 11

| DRAWN BY    | CHECKED BY   | APPROVED BY        |
|-------------|--------------|--------------------|
| KL          | BG           | SG                 |
| SCALE @ A1  | 1:2500       | DATE<br>25/02/2025 |
| PROJECT NO. | DRAWING NO.  | REV.               |
| 23-128      | 23-128-DL100 | A                  |

Iceni Projects accept no responsibility for any unauthorised amendments to this drawing. Only figured dimensions are to be worked to.



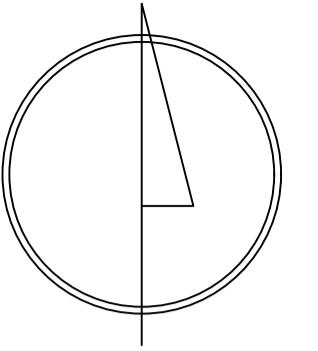
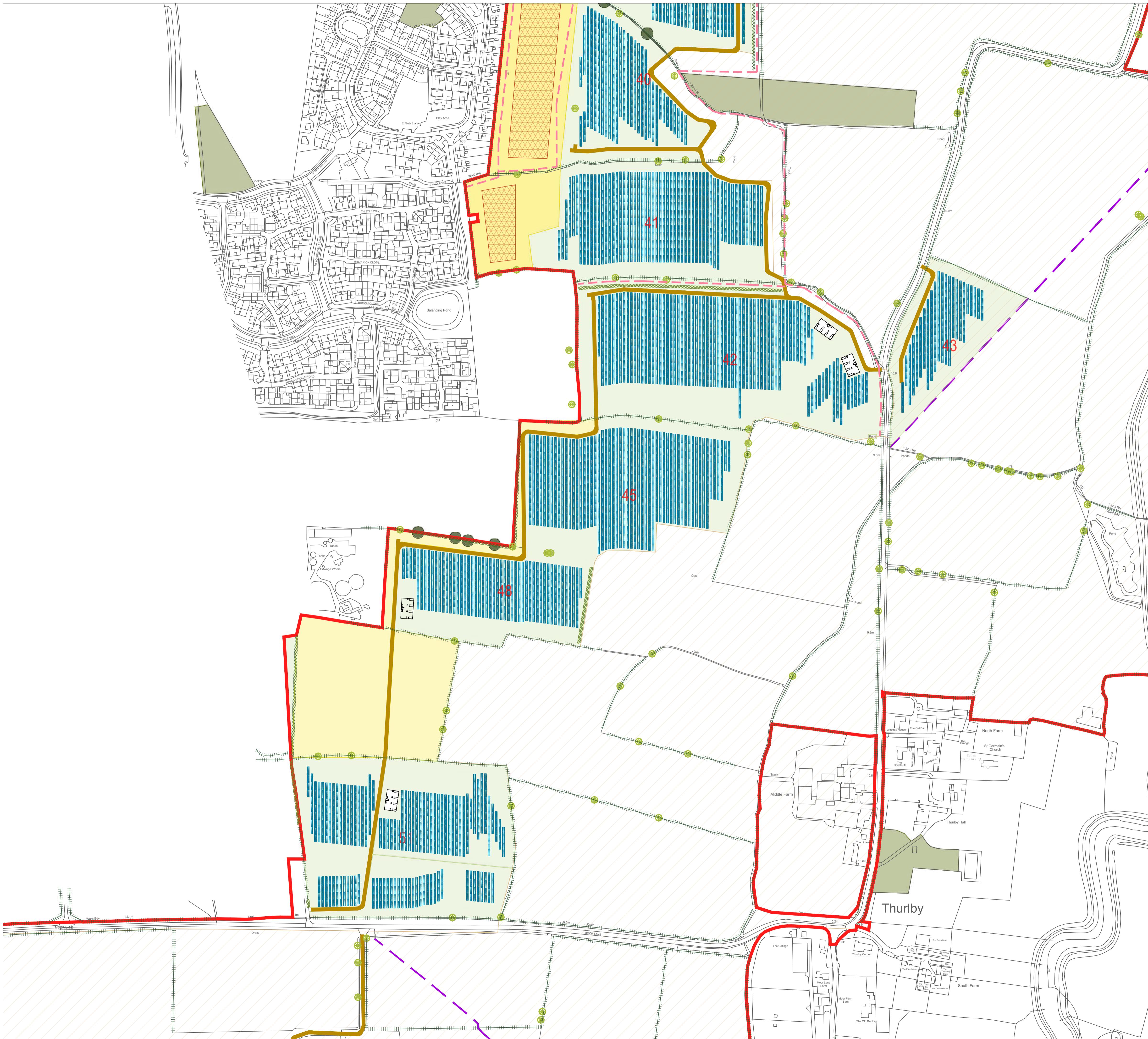
### Key

- Site Boundary
- Existing Public Rights of Way
- Proposed Permissive Paths
- Existing Hedgerow
- Existing Woodland
- Existing Trees
- Proposed Hedgerows
- Proposed Belt of Trees
- Proposed Individual Trees
- Proposed Grassland Enhancement
- Proposed Species Rich Grassland
- Proposed Orchard
- Land for potential environmental mitigation. Where not required, existing land use will be retained.

**ICENI PROJECTS LIMITED**  
DA VINCI HOUSE  
44 SAFFRON HILL  
LONDON  
EC1N 8FH

T 020 3640 8508  
mail@iceniprojects.com





Fosse Green Energy Limited

Fosse Green Energy - East West Installation

Landscape Mitigation Plan DRAFT  
Sheet 6 of 11

| DRAWN BY    | CHECKED BY   | APPROVED BY |
|-------------|--------------|-------------|
| KL          | BG           | SG          |
| SCALE @ A1  | 1:2500       | DATE        |
|             |              | 25/02/2025  |
| PROJECT NO. | DRAWING NO.  | REV.        |
| 23-128      | 23-128-DL100 | A           |

Iceni Projects accept no responsibility for any unauthorised amendments to this drawing. Only figured dimensions are to be worked to.



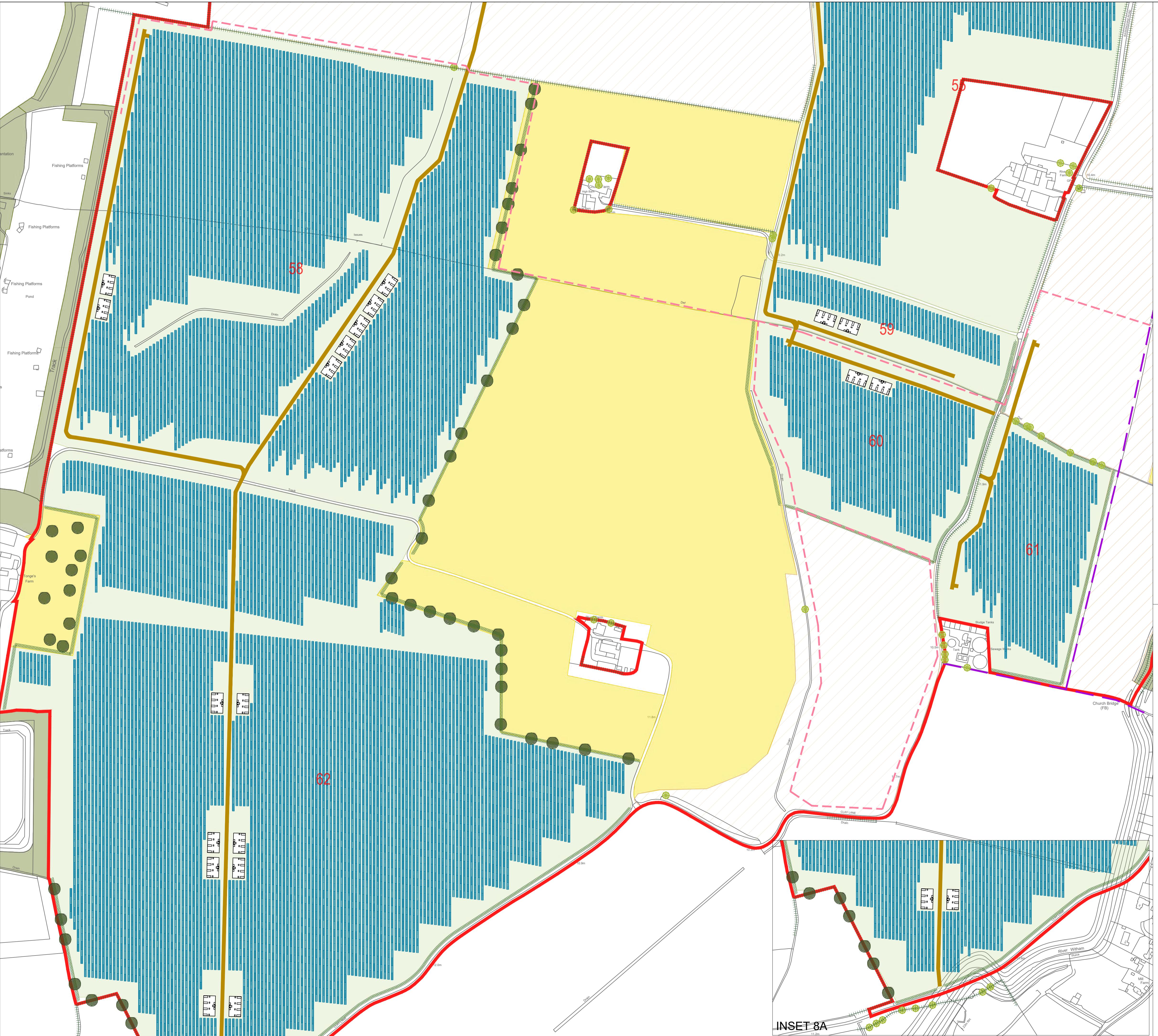
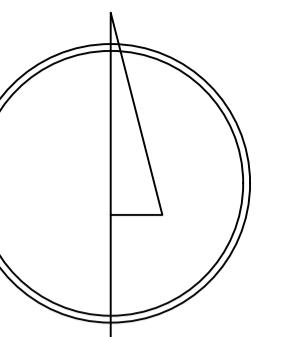
## Key

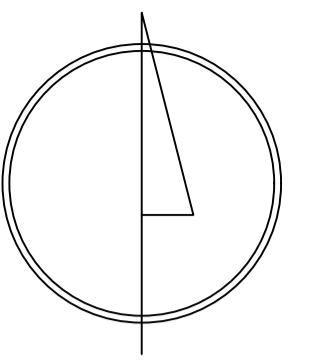
-  Site Boundary
-  Existing Public Rights of Way
-  Proposed Permissive Paths
-  Existing Hedgerow
-  Existing Woodland
-  Existing Trees
-  Proposed Hedgerows
-  Proposed Belt of Trees
-  Proposed Individual Trees
-  Proposed Grassland Enhancement
-  Proposed Species Rich Grassland
-  Proposed Orchard
-  Land for potential environmental mitigation.  
Where not required, existing land use will  
be retained.

**ICENI PROJECTS LIMITED**  
DA VINCI HOUSE  
44 SAFFRON HILL  
LONDON  
EC1N 8EH

T 020 3640 8508  
mail@iceniprojects.com

The Iceni logo is a blue circular badge with the word 'iceni' in white lowercase letters.



Fosse Green Energy Limited


Fosse Green Energy - East West Installation

# Landscape Mitigation Plan DRAFT

## Sheet 7 of 11

| DRAWN BY    | CHECKED BY   | APPROVED BY |
|-------------|--------------|-------------|
| KL          | BG           | SG          |
| SCALE @ A1  | DATE         |             |
| 1:2500      |              | 25/02/2025  |
| PROJECT NO. | DRAWING NO.  | REV.        |
| 23-128      | 23-128-DL100 | A           |





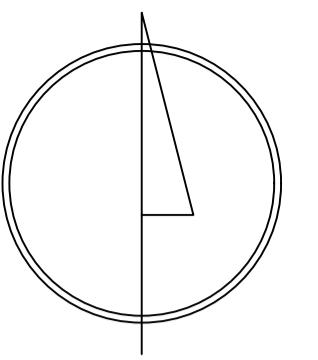
## Key

- Site Boundary
- Existing Public Rights of Way
- Proposed Permissive Paths
- Existing Hedgerow
- Existing Woodland
- Existing Trees
- Proposed Hedgerows
- Proposed Belt of Trees
- Proposed Individual Trees
- Proposed Grassland Enhancement
- Proposed Species Rich Grassland
- Proposed Orchard
- Land for potential environmental mitigation. Where not required, existing land use will be retained.

ICENI PROJECTS LIMITED  
DA VINCI HOUSE  
44 SAFFRON HILL  
LONDON  
EC1N 8FH

T 020 3640 8508  
mail@iceniprojects.com




Fosse Green Energy Limited

Fosse Green Energy - East West Installation

Landscape Mitigation Plan DRAFT  
Sheet 9 of 11

| DRAWN BY    | CHECKED BY   | APPROVED BY        |
|-------------|--------------|--------------------|
| KL          | BG           | SG                 |
| SCALE @ A1  | 1:2500       | DATE<br>25/02/2025 |
| PROJECT NO. | DRAWING NO.  | REV.               |
| 23-128      | 23-128-DL100 | A                  |

iceni Projects accept no responsibility for any unauthorised amendments to this drawing. Only figured dimensions are to be worked to.



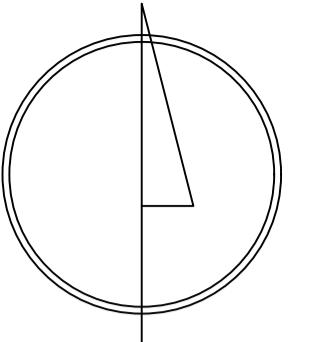
## Key

- Site Boundary
- Existing Public Rights of Way
- Proposed Permissive Paths
- Existing Hedgerow
- Existing Woodland
- Existing Trees
- Proposed Hedgerows
- Proposed Belt of Trees
- Proposed Individual Trees
- Proposed Grassland Enhancement
- Proposed Species Rich Grassland
- Proposed Orchard
- Land for potential environmental mitigation. Where not required, existing land use will be retained.

ICENI PROJECTS LIMITED  
DA VINCI HOUSE  
44 SAFFRON HILL  
LONDON  
EC1N 8FH

T 020 3640 8508  
mail@iceniprojects.com




Fosse Green Energy Limited

Fosse Green Energy - East West Installation

Landscape Mitigation Plan DRAFT  
Sheet 10 of 11

| DRAWN BY    | CHECKED BY            | APPROVED BY        |
|-------------|-----------------------|--------------------|
| KL          | BG                    | SG                 |
| SCALE @ A1  | 1:2500                | DATE<br>25/02/2025 |
| PROJECT NO. | DRAWING NO.<br>23-128 | REV.<br>A          |

iceni Projects accept no responsibility for any unauthorised amendments to this drawing. Only figured dimensions are to be worked to.



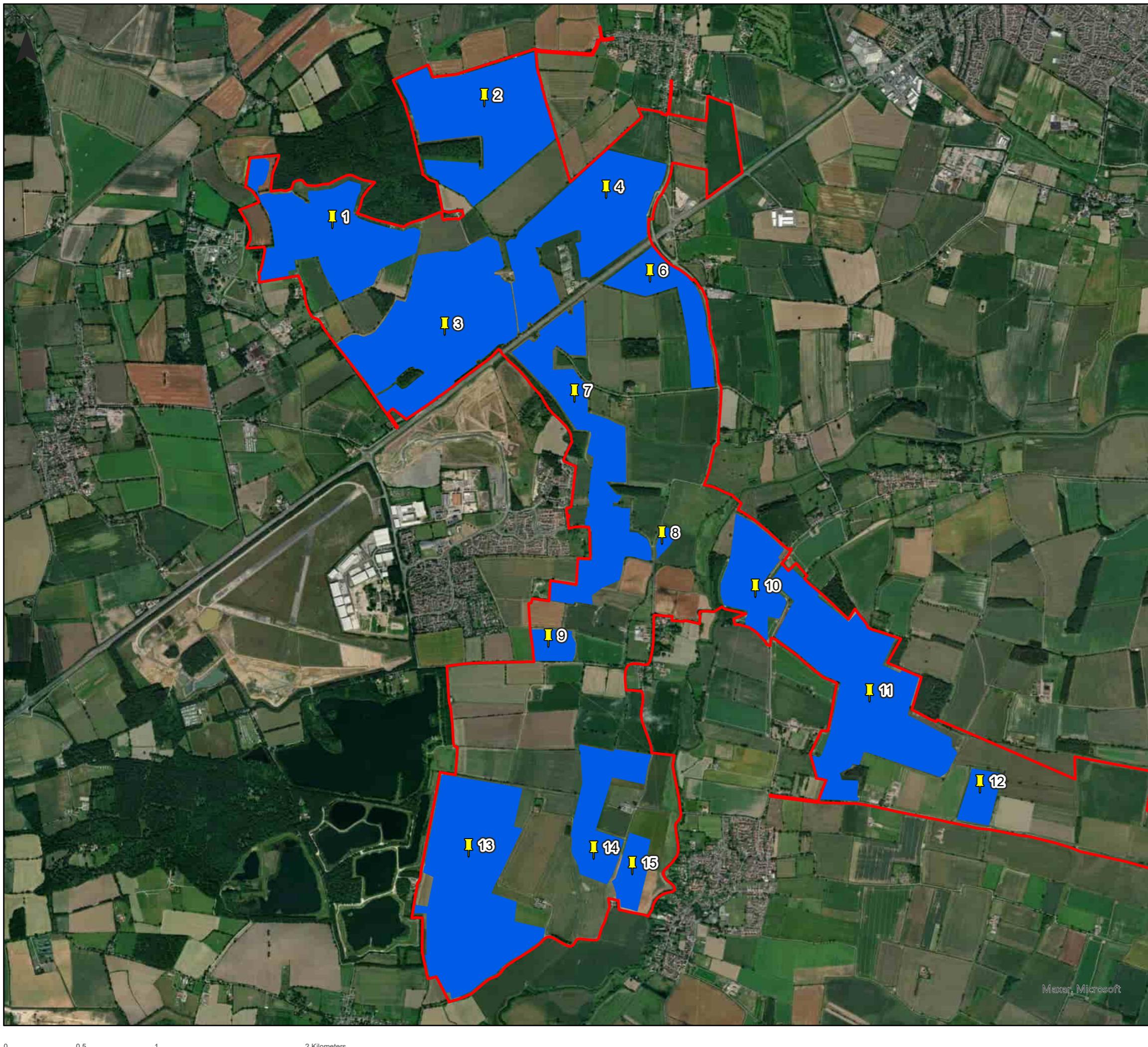
## Key

- Site Boundary
- Existing Public Rights of Way
- Proposed Permissive Paths
- Existing Hedgerow
- Existing Woodland
- Existing Trees
- Proposed Hedgerows
- Proposed Belt of Trees
- Proposed Individual Trees
- Proposed Grassland Enhancement
- Proposed Species Rich Grassland
- Proposed Orchard
- Land for potential environmental mitigation. Where not required, existing land use will be retained.

ICENI PROJECTS LIMITED  
DA VINCI HOUSE  
44 SAFFRON HILL  
LONDON  
EC1N 8FH

T 020 3640 8508  
mail@iceniprojects.com



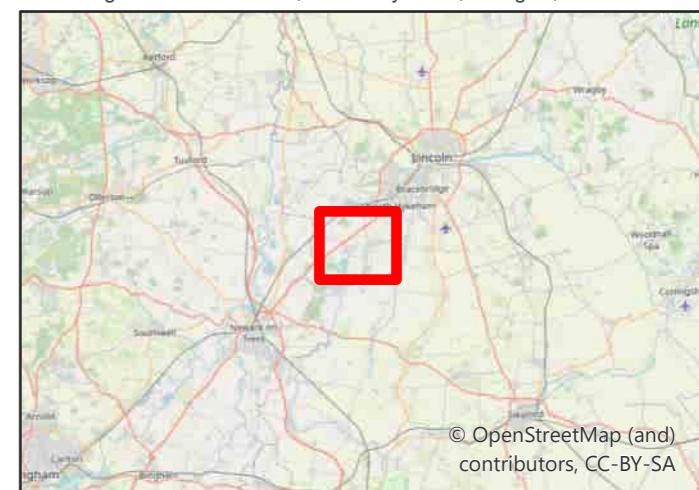

Fosse Green Energy Limited

Fosse Green Energy - East West Installation

Landscape Mitigation Plan DRAFT  
Sheet 11 of 11

| DRAWN BY    | CHECKED BY   | APPROVED BY |
|-------------|--------------|-------------|
| KL          | BG           | SG          |
| SCALE @ A1  | DATE         | 25/02/2025  |
| PROJECT NO. | DRAWING NO.  | REV.        |
| 23-128      | 23-128-DL100 | A           |

iceni Projects accept no responsibility for any unauthorised amendments to this drawing. Only figured dimensions are to be worked to.




Fosse Green Solar Farm  
Panel Area Labels  
Figure 6

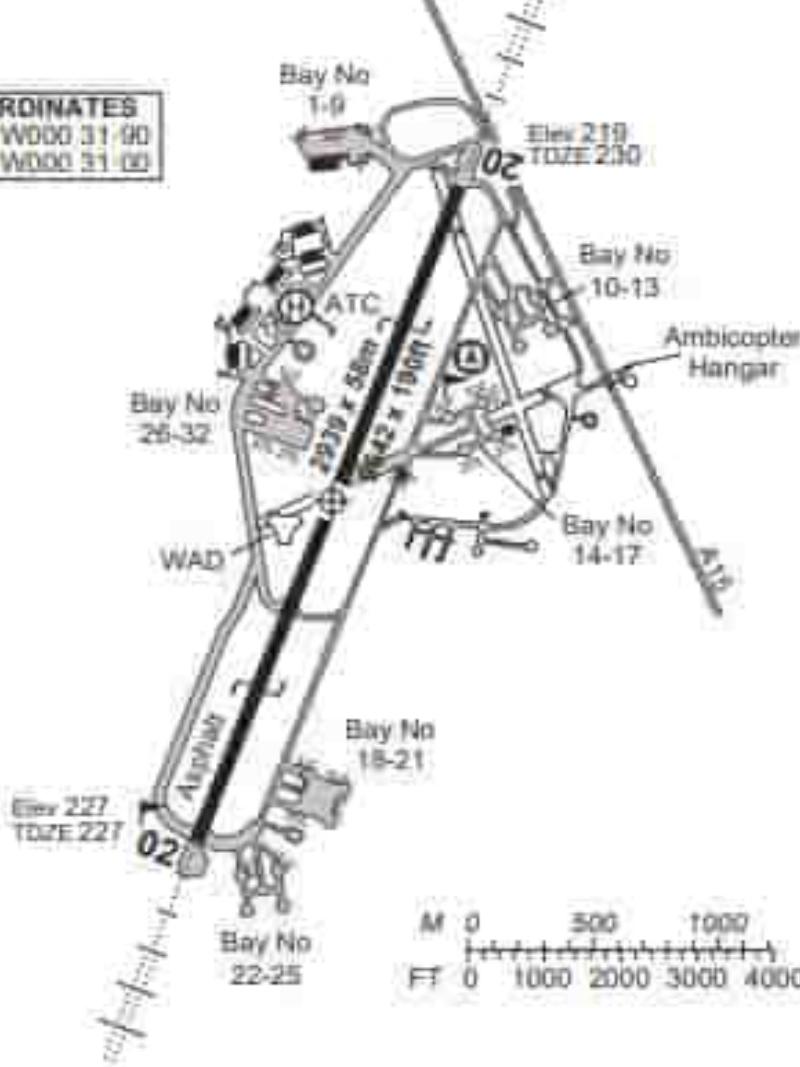
Key

- Development Boundary
- Panel Area Label
- Panel Area

Neo Office Address:  
Wright Business Centre, 1 Lonmay Road, Glasgow, G33 4EL



## AERODROME


## WADDINGTON

|                              |        |                        |                               |              |                 |
|------------------------------|--------|------------------------|-------------------------------|--------------|-----------------|
| Elev 230                     | Viz 0° | ARP                    | N53 09 97 W000 31 43 (WGS 84) | 05 OCT 23    | D1              |
| WADDINGTON GROUND<br>342-125 |        | TOWER<br>121-3 241-325 | APPROACH<br>345-075           | OPS<br>369-4 | ATIS<br>291-675 |

W000 31 W000 32 W000 31 W000 30

N53  
11

**THRESHOLD COORDINATES**  
 Rwy 02 - N53 09 26 W000 31 90  
 Rwy 20 - N53 10 02 W000 31 00

N53  
10N53  
09

| RWY        | SLOPE   | LDA m/ft  | APP LGT              | RWY LGT                         |
|------------|---------|-----------|----------------------|---------------------------------|
| 02 (022°T) | 0.08%ID | 2705/8875 | P3° (48)<br>P3° (44) | CL-5B (H)                       |
| 20 (202°T) | 0.08%ID |           |                      | RTHL-REDL (H); RCLL(H)15m  RENL |

1. **WARNING:** Strong Westerly winds can produce unexpected turbulence in the final stages of approach to Rwy 20.

2. Circuits: Normal - 1300 1000.

3. RHAG installations 18 inches high; 35ft from rwy edge. RHAG info:

- Rwy 02 - 2050ft.
- Rwy 20 - 2000ft.

For normal ops approach cable DERIGGED, overrun cable UP.

20min DAY and 25min NIGHT PNR approach cable to be configured UP.

4. CIRC prohibited W of the Rwy 02/20 extended centreline.

5. Public road crosses approach to Rwy 20.

6. NW rwy has 9m wide tarmac shoulders (non-load bearing).

7. Non-standard RCLL at 15m spacing (instead of 30m) to allow LVP ops.

8. To achieve the full declared distance on Rwy 02RH, a back track via the turn pad is required.